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Problem setting

Consider the setting of online learning in finite horizon episodic Markov Deci-

sion Process: MDP(S,A, H,P, r), where S ⊆ Rds is the state space, A is any

arbitrary action set, H ∈ N is the horizon.

Reward function. r : S × A → [0, 1] is deterministic and known.

Transition probability. P : S × A → ∆(S) follows an exponential family model
introduced by Chowdhury et al. (2021):

PW0(s′ | s, a) = q(s′) · exp (〈ψ(s′),W0φ(s, a)〉 − Zsa(W0)) , (1)

where feature mappings ψ : S → Rdψ and φ : S × A → Rdφ, and base measure

q : S → R are known, but matrixW0 ∈ Rdψ×dφ is unknown.

Interacting with the MDP

In every round k ∈ [K]:
Observe initial state sk1 .

Select policy πk : S → A
Run policy on MDP and observe trajectory {(sh, ah, rh)}h∈[H ], where

ah = πk(sh), rh = r(sh, ah), and sh+1 ∼ P(·|sh, ah), for all h ∈ [H ].

Objective

Value functions. For any policy π, denote V π
h : S → R as the expected value

of future cumulative rewards when the learner plays π starting from a state in
step h:

V π
h (s) := E

 H∑
h′=h

rh′(sh′, ah′)
∣∣∣∣∣∣ sh = s, ah:H ∼ π

 .
We also let V π

h (·;W ) denotes value function under transition param. byW .
Optimal policy. Denote π? to be a policy such that V π?

h (s) is maximized at every
state s and step h.

Measure performance as regret against the optimal policy:

Regret(K) :=
K∑
k=1

(
V π?

1 (sk1) − V πk

1 (sk1)
)
.

Discussion on model assumption

The exponential family transition in Equation (1) captures previously studied

models in RL.

Special case: (non)linear dynamical systems

Linear dynamical systems are an important theoretical model; they govern the

dynamics for the linear quadratic regulator (LQR).

s′ = As +Ba + ε, where ε ∼ N (0,Σ).

Mania et al. (2020); Kakade et al. (2020) study nonlinear extensions:

s′ = W0φ(s, a) + ε, where ε ∼ N (0,Σ).

Exponential family transitions model a richer class of densities beyond

(non)linear dynamical systems due to the added flexibility in q and ψ!
E.g., nonadditive and nongaussian noise.

Motivation: how dowe do model estimation?

Chowdhury et al. (2021) propose an optimistic model-based RL algorithm

called Exp-UCRL that uses MLE for model estimation.

Estimating model parameterW0 with MLE requires computing the

log-partition function Zsa(·).
For nonlinear dynamical systems, this is efficient.

In general, one can estimate Zsa(·) via Markov Chain Monte Carlo methods,
but this can be slow and induce approximation errors.

Exp-UCRL is statistically efficient, but not computationally efficient in general,

so we need an alternative model estimation procedure.

Our approach: score matching

Score matching (Hyvärinen, 2005)

For any (s, a), the population loss function is

J (W ) := 1
2

∫
S
PW0(s′ | s, a)

∥∥∥∥∥∇s′ log PW0(s′ | s, a)
PW (s′ | s, a)

∥∥∥∥∥
2
ds′.

= 1
2

∫
S
PW0(s′ | s, a)

ds∑
i=1

(
(∂i log PW (s′ | s, a))2 + 2∂2

i log PW (s′ | s, a)
)
ds′ + C,

where second line uses integration by parts trick under some regularity condi-

tions (see paper for more details).

Score matching is an unnormalized density estimation procedure, which

does not require computing of Zsa(·).
Empirical loss function Ĵ(W ) can be minimized via dφ · dψ-dimensional ridge
regression problem ⇒ computationally efficient!

Algorithm: score matching for reinforcement learning (SMRL)

We use score matching as a subroutine for parameter estimation for an opti-

mistic planning algorithm, SMRL.

Main result: SMRL algorithm and regret guarantee

In every round k ∈ [K]:

Estimate Ŵ = minW Ĵ(W ) + λ
2 ‖W‖2

F using transition samples from

previous k − 1 episodes.
Construct confidence set Wk centered at Ŵ .
Choose the optimistic policy πk = arg maxπ supW∈Wk

V π
1 (sk1 ;W ).

Regret guarantee. With high probability, SMRL achieves regret:

Regret(K) ≤ Õ
(
dψdφ

√
H3T

)
,

where Õ(·) hides log factors and poly factors of problem constants.
Remark. Optimistic planning can be NP-hard, but this step can be approxi-

mated by model predictive control algorithms.

Proof ingredients.

1. Show that whp, for all episodes k ∈ [K], thatW0 ∈ Wk.

2. By optimism, regret is bounded by (learners est. of value of πk) − (true value of πk).
3. Bound the difference in value function under distributions W̃k andW0, where W̃k is the

model attaining supremum in the optimistic planning step.

Experiments

Wedemonstrate the benefit of using SMRLwith an expressive transitionmodel

vs the conventional approach of fitting an LDS (Kakade et al., 2020).

Experimental problem

Consider a synthetic MDP with the following multimodal transition function

and reward structure.

Multimodal characteristic of MDP

Next state density P for a = +1 and a = −1
have disjoint modes.

Crests for P(s′ | s, a = +1) are located at
troughs for P(s′ | s, a = −1), and vice versa.
Rewards peak at crests of P(s′ | s, a = +1) ⇒
a = +1 is always the optimal action.

3.0 1.5 0.0 1.5 3.0
s′

0.0

0.2

0.4

0.6

0.8

1.0 (s′|s, a = + 1)
(s′|s, a = 1)

Reward function

Figure 1. Synthetic MDP

Experimental setup

We fix the simple random sampling shooting planner that at every step, (i)

simulates lookaheads of playing [+1, . . . ,+1] and [−1, . . . ,−1], and (ii) chooses
action depending on which yields higher reward. We compare these model

estimation methods:

1. Using SMRL with given transition probability class P .
2. Fitting an LDS using MLE to get Ŵk.

Results

Score matching estimates transition density well, and the planner quickly

learns to play the optimal action (Figure 2b).

LDS is not expressive enough to distinguish action choices.
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Figure 2. SMRL with expressive density vs LDS. Regret is w.r.t. the planner with ground truth

model (Ŵk = W0), a surrogate for the optimal policy.
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