
Solving the Avicaching Game Faster and Better

Anmol Kabra, Yexiang Xue and Carla Gomes

Summer 2017

List of Functions, Symbols and Terms

Functions

A ·B (dot product) Defined as ATB. All 1D matrices are imagined as

column vectors

batch-multiply(·) Operates on m×n×p and m×p× q tensors to give a m×n× q tensor

reLU(·) Rectified Linear Unit; defined as reLU(z) = max(0, z)

softmax(·) Defined as softmax(zi) = exp(zi)∑
i exp(zi)

Symbols

J Number of locations in the dataset

nF Number of features in the dataset F (length of F[v][u])

T Number of time units for which data is available

Terms

CPU “set” All operations done on the CPU

Epoch One training/testing period; iteration

GPU “set” Only Matrix/Tensor operations done on the GPU, rest on the CPU

LP Linear Programming

LP Standard Format Arrangement of objective function and constraints operated on by

library LP solvers — minimize [cTx]; subject to [Ax ≤ b, xi ≥ 0]

Tensor Multi-dimensional (usually more than 2 dimensions) array

ii

Contents

1 Introduction 1

1.1 Avicaching . 1

1.2 Important Questions . 2

1.2.1 Solving Faster . 3

1.2.2 Better Results . 3

1.2.3 Adjusting the Model’s Features . 3

1.3 Computation Using GPUs . 4

1.3.1 GPU Architecture . 4

1.3.2 Avoiding Specific Types of Operations in GPUs 8

1.3.3 GPUs’ Strengths . 10

2 Problem Formulation 11

2.1 Identification Problem . 11

2.1.1 Structure of Input Dataset for Identifying Weights 12

2.1.2 Minimizing Loss for the Identification Problem 12

2.2 Pricing Problem . 14

2.2.1 Input Dataset for Finding Rewards 16

2.2.2 Calculating Rewards . 17

2.2.3 Constraining Rewards . 17

3 Experiment Specifications 19

3.1 Datasets . 19

3.2 Test-Machine Configuration . 20

iii

3.3 Algorithm Choice . 21

3.4 Running the Identification Problem’s Model 21

3.4.1 Optimizing the Original Dataset . 21

3.4.2 Testing GPU Speedup on the Random Dataset 22

3.5 Running the Pricing Problem’s Model . 22

3.5.1 Optimizing the Original Dataset . 22

3.5.2 Testing GPU Speedup on the Random Dataset 23

4 Results 24

4.1 Identification Problem’s Results . 24

4.1.1 Optimization Results . 24

4.1.2 GPU Speedup Results . 27

4.2 Pricing Problem’s Results . 27

4.2.1 Optimization Results . 27

4.2.2 GPU Speedup Results . 29

5 Conclusion 34

5.1 Interesting Inferences . 35

5.2 Limitations . 36

5.3 Further Research . 36

A Implementation 41

A.1 Specific Implementation Details . 41

A.1.1 Building the Dataset F . 41

A.1.2 Modeling the Linear Programming Problem in the Standard Format . 42

B GPU Speedup in LP Computation 44

B.1 Possible Reasons for GPU Speedup . 44

B.2 LP Slowing Down or Speeding Up? . 45

B.3 CPU and Main Memory Usage . 46

B.4 Parallelism Doesn’t Always Help . 48

iv

Chapter 1

Introduction

Optimizing predictive models on datasets obtained from citizen-science projects can be

computationally expensive as these datasets grow in size. Consequently, running models

based on Multi-layered Neural Networks, Integer Programming, and other optimization

routines can become more computationally difficult as the number of parameters increase,

despite using the faster Central Processing Units (CPUs) in the market. Incidentally, it

becomes difficult for citizen-science projects, which often deal with large datasets, to scale if

the organizers do not employ special processing units to run neural networks as optimization

models, which require extensive tensor operations. One such special processing unit is the

Graphical Processing Unit (GPU), which offers numerous cores to parallelize computation.

GPUs can often outperform CPUs in computing such predictive models if these models

heavily rely on large-scale tensor operations (1; 2). By using GPUs over CPUs to accelerate

computation on a citizen-science project, the model could achieve better optimization in less

time, enabling the project to scale.

1.1 Avicaching

Part of the eBird project, which aims to “maximize the utility and accessibility of the vast

numbers of bird observations made each year by recreational and professional bird watchers”

(3), Avicaching is an incentive-driven game trying to homogenize the spatial distribution of

citizens’ (agents’) observations (4; 5). Since the dataset of agents’ observations in eBird is

1

geographically heterogeneous (concentrated in some places like cities and sparse in others),

Avicaching homogenizes the observation set by placing rewards at and attracting agents

to under-sampled locations (4). For the agents, collecting rewards increases their ‘utility’

(excitement, fun etc.), while for the organizers, a more homogeneous observation dataset

means better sampling and higher confidence in using it for other models.

Figure 1.1: Avicaching 2014-15 Results in Tompkins and Cortland Counties, NY: With the previous

model (4; 5; 3), Avicaching was able to attract ‘eBirders’ to under-sampled locations by distributing

rewards over the location set.

To accomplish this task of specifying rewards at different locations based on the historical

records of observations, Avicaching would learn how agents change their behavior when a

certain sample of rewards was applied to the set of locations, and then redistribute rewards

across the locations based on those learned parameters (5). This requirement naturally

translates into a optimization problem, which we implement using multi-layered neural

networks and linear programming.

1.2 Important Questions

Although the previously devised solutions to Avicaching were conceptually effective (4; 5),

using CPUs to solve Mixed Integer Programming and (even) shallow neural networks made the

models impractical to scale. Solving the problems faster would have also allowed organizers

to find better results (more optimized). These concerns form the pivots of our research study.

2

1.2.1 Solving Faster

We were interested in using GPUs to run our optimization models because of their capability

to accelerate problems based on large tensor operations (1; 2). Newer generation NVIDIA

GPUs, equipped with thousands of CUDA (NVIDIA’s parallel computing API) cores (6),

could have empowered Avicaching’s organizers to scale the game, if the underlying models

were computed using simple arithmetic operations on tensors rather than using conditional

logic (see Section 1.3.2). Since even the faster CPUs — in the range of Intel Core i7 chipsets

— are sequential in processing and do not provide as comparable parallel processing1 as GPUs

do, we sought to solve the problem much faster using GPUs. But how fast could we do

it?

1.2.2 Better Results

For learning parameters in agents’ change of behavior on a fixed set of rewards, the previously

devised sub-model delivered predictions that differed 26% from Ground Truth (5, Table 1).

This model was then used to redistribute rewards in a budget. If we could get closer to

the Ground Truth, i.e., better learn the parameters for the change, we could redistribute

rewards with superior prediction/accuracy. Since the organizers require the best distribution

of rewards, we will need a set of learned parameters that is closer to the Ground Truth (in

terms of Normalized Mean Squared Error (5, Section 4.2)). In a gist, we aimed to learn the

parameters more suitably, and find the best allocation of rewards.

1.2.3 Adjusting the Model’s Features

Once the model starts delivering better results than the previously devised models, one thinks

if some characteristics2 of the model can be changed to get more preferable results (one could

also build a better model). While a goal of “getting better results” is an unending struggle,

there is a trade-off with practicality as these adjustments take time and computation power to

test — and we didn’t have unlimited resources. Therefore, we asked if one could reasonably

1CPUs often have multiple cores nowadays, but very few compared to what many GPUs have.
2Tinkering with hyper-parameters like learning rate or adding a weight regularizer.

3

adjust the model’s features to improve performance and optimization.

1.3 Computation Using GPUs

The use of GPUs has changed drastically in the last decade — from rendering superior

graphics to parallelizing floating point operations. Companies like NVIDIA are now providing

General Purpose GPUs (GPGPUs) that are capable of executing parallel algorithms using

thousands of cores and threads (6). Furthermore, by working with newly-developed parallel

programming APIs like CUDA, one can handle a GPU’s threads more efficiently and optimize

a task’s datapath (7). In the next sections, we briefly describe NVIDIA GPU’s architecture,

instruction set, and best practices for optimization. Although we do not implement the

CUDA back-end manually and use PyTorch’s implementation (8), understanding the basics

of the processor was helpful for designing our models.

1.3.1 GPU Architecture

We describe the structure and abstractions of an NVIDIA GPU with Pascal architecture3.

These devices are multi-threaded multi-processors for executing “fine-grained threads effi-

ciently” (9, Appendix B.4). Unlike Personal Computer CPUs, which currently comprise

1-8 cores with fast and low-latency datapaths, GPUs provide scalable parallel processing

power with high throughput and latency4 (9; 10). Informally, GPUs are often referred to as

a collection of many ‘dumb’ cores, unlike the few ‘smart’ cores in a CPU. Nonetheless, GPUs

are efficient in executing simple instructions in parallel, using hierarchies of cores, threads,

and memory.

Core Organization

In most architectures by NVIDIA, many Scalar Processors (SP or CUDA cores) are clustered

in a Streaming Multiprocessor (SM), which are then organized in Grid Processing Clusters

(GPCs). A GPU can have several GPCs, as shown in Figure 1.2a (7; 1; 10).

3We use NVIDIA Quadro P4000 (Pascal architecture) for our tests.
4High latency is undesirable.

4

(a) Organization of Cores in NVIDIA Pascal GP100 GPU: In 6 GPCs and 60 SMs, 3840 SP or

CUDA Cores (depicted by green blocks) are arranged (11; 1).

(b) Constituents of a Streaming Multiprocessor (11; 1).

Figure 1.2: The NVIDIA Pascal Architecture: A GPU, like a typical CPU, contains multiple

hierarchies of memory. In addition, NVIDIA also builds a hierarchy of core organization.

5

The Streaming Multiprocessor (Figure 1.2b), which is the primary multi-threaded multi-

processor, houses a shared memory unit for all SPs along with registers and Special Function

Units (SFUs), which can calculate specific mathematical functions in fewer clock cycles than

threads. The SM is responsible for relaying instructions to threads (in SPs) and maintaining

synchronized parallel computation at barriers (11; 10). GPCs and other hierarchies provide

abstractions to memory and program access.

Memory Organization

Even the memory units are organized into hierarchies like multi-level caches in CPUs

(Figure 1.2). In a SM, there are: dedicated local memory units for threads, register files

shared by several SPs in a SM, and shared memory units for all SP Cores in a SM (11; 1).

The global internal memory of the GPU (like the RAM of a computer), which is housed

separately around the clusters of SMs, stores the datasets for a program. Data is then

distributed in the shared and local memory units once threads start executing an instruction

(9, Appendix B). Moreover, similar to the multi-level cache structure in CPUs, GPUs also

have on-chip cache hierarchy (Figure 1.2), which enables threads to quickly access working

data, thus increasing the performance. On a side note, GPUs’ caches are often not big enough

to hold full datasets as programs’ often require large datasets, leading to higher miss rates

than those of caches in CPUs (9, Appendix B).

Thread Organization

According to NVIDIA, the parallel structure is obtained by organizing threads into a hierarchy

(“grids” of “blocks” of “warps” of “threads”), where threads of a warp (an abstraction) execute

in lockstep per clock cycle (7; 10) (9, Appendix B). In other words, warps are the basic units

of execution in a GPU, which receive singular instructions from the control unit, and forward

them to their constituent threads for execution (7; 10). This abstraction allows the GPU to

execute independent sub-tasks in parallel on a large scale (Figure 1.3), reducing the total

runtime of the program.

NVIDIA calls this setup “Single-Instruction Multiple-Thread (SIMT)” (7) (9, Ap-

pendix B.4), where a single instruction is executed in lockstep by multiple threads in a

6

Figure 1.3: Thread Organization in a GPU: Warps are only an abstraction for identifying threads

executing a single instruction; however, threads are physically organized into blocks and grids (7; 1)

warp (though allowed to branch and diverge). The differences between SIMT and Single-

Instruction Multiple-Data (SIMD), a common feature in CPUs, are very subtle. While

SIMD distributes data sequences into vectors to be executed by a single core/thread of the

CPU (data-level parallelism), SIMT requires a particular thread to only operate on a scalar

element of the dataset (9). In this way, having thousands of threads running in locksteps

provides better throughput than doing vector operations per clock cycle. SIMT also enables

programmers to write a program meant for a single, independent thread instead of managing

vectors in their code, which promotes ease of use and programming (7, Chapter 4).

Instruction Set

The Instruction Set of a GPU is limited, which causes complex instructions to take several

clock cycles. Even though a Special Functional Unit (SFU) computes complex functions (sine,

square-root, reciprocal function etc.) in fewer clock cycles, their count is small compared

to the commonplace threads (9, Appendix B). The instruction set for Pascal architecture

7

contains basic operations to load and store memory, perform basic floating point, integer

(add, subtract, multiply, divide, min, max, left-shift etc.), binary logical (or, and, xor etc.),

and branch-jump operations (12; 10). This comprises a very basic set of instructions unlike

those in Intel CPUs, for example, which have coalesced and dedicated datapaths for complex

instructions5 (9).

1.3.2 Avoiding Specific Types of Operations in GPUs

GPUs are not better than CPUs at many operations, unlike popular perception. With

parallel processing comes concerns of synchronization delays, blocking instructions, program

correctness etc. Moreover, since GPUs are separate units of processors, usually connected

to CPUs by PCIe lanes, back and forth memory transfer can cause slowdowns in overall

performance. Even the GPUs low-level caches are not big enough to deliver hit rates as

compared to CPUs. Often there exists a tradeoff when programming with GPUs, and one

should take care to avoid such delays.

Branch and Diverge

Since NVIDIA GPUs deal with program correctness through intra-warp synchronization

(keeping warp threads in lockstep), threads must remain in sync even when conditional blocks

force different datapaths for different threads. This ultimately reduces performance as some

threads become inactive, which can aggregate and slowdown the performance of the whole

program.

To avoid such delays and maximize throughput, one should elude from using extensive

branching in the program. Using conditional checks can change a thread’s datapath, which

can possibly stall other threads in the warp from proceeding to the next instruction in the

program. This behavior is referred to as ‘branch and diverge’ (Figure 1.4), which occurs when

some threads in a warp follow a different datapath due to conditional branching, ‘diverging’

from the group. Now when the warp’s threads are forced to converge, those diverging threads

would take longer to complete the instruction, causing the non-diverging threads to wait.

5Intel x86 CPUs have Complex Instruction Set Computer (CISC) Design.

8

This radically decreases the throughput of the warp, which again diverges from the block,

adding up the latency (9, Appendix B)(10).

Figure 1.4: Decrease in GPU Throughput due to Branch and Diverge: In this case, while some

threads execute A, B, others execute X, Y. If those sets of operations are all executed by threads of

the same warp, the threads could diverge from the group and decrease the throughput (1).

To ensure program correctness, the diverging threads in a warp are stalled while the other

non-diverging threads are executed and vice-versa, according to NVIDIA (7; 1). For example,

in Figure 1.4, the 4 threads with thread-indexes = {0, 1, 2, 3} will have to wait while the other

threads in the warp execute instructions X and Y, and, the other threads will be stalled while

the 4 threads execute instructions A and B. This leads to a 50% decrease in GPU performance

as instructions get ‘serialized’ (1), though ensuring program correctness. The overhead can

slowdown the run drastically if the program is extensively branched6. This overhead can

either be decreased by reducing the number of conditional statements or by intentionally

directing conditional statements to threads to different warps in the block, which execute

independently (1). The latter, at the maximum, only affects full program synchronization if

the operations in conditional blocks have unequal runtimes. Furthermore, the performance is

usually much better than the otherwise decrease due to diverging intra-warp threads.

Memory Limitations

PCIe lanes between GPU’s internal memory and system’s main memory are not as fast as

on-chip cache access(7; 1). This means that transferring datasets back and forth between

6On a side note, functions like min, max, abs would not add overhead due to branch and diverge since
they have devoted datapaths, and operation codes in the GPUs’ instruction set.

9

GPUs and CPUs can add up considerably. Often the limits of GPU’s internal memory or

required operations on a dedicated device can force the user to transfer datasets multiple

times. Even so, one should look for optimizations that can reduce the number of transfers

whenever possible, especially when large datasets are involved.

This suggestion is also applicable when transferring datasets in memory intra-GPU

(between caches). Miss rates in a GPU’s local caches are often high due to limited size, and

data requests from higher-level caches can often be expensive.

1.3.3 GPUs’ Strengths

Inferring from GPUs’ weaknesses and architecture, we can say that GPUs are good at handling

independent sub-tasks with less diverging sections. These independent sub-tasks can usually

be clubbed into matrices and tensors, which the threads operate on in parallel. The fewer

conditional branching we have in our algorithms, the better.

Therefore, GPUs are particularly good at doing linear algebra (9; 1) since most arith-

metic operations on matrix elements can be independently executed without branching.

Avoiding branching often requires extensive dataset preprocessing; consequently, one should

meticulously design the structure of the models’ datasets. Tensor-based datasets are often

required in machine learning problems, graphics rendering routines, graph-based algorithms

etc., which GPUs can potentially accelerate (9).

10

Chapter 2

Problem Formulation

Our models strongly draw from the previous studies (5; 4), with modifications directed at

reducing computation time, as well as getting better results. Since GPUs enable faster

computation on tensors (see Section 1.3.3), both the Identification and the Pricing Problem

are formulated as tensor-based 3-layered and 2-layered neural networks respectively using

the PyTorch library (8). Recognizing that NVIDIA GPUs easily pair with PyTorch (8),

accelerating tensor operations using NVIDIA’s APIs — CUDA and cuDNN (7; 2), we aim to

maximize parallel operations and minimize our models’ computation time.

2.1 Identification Problem

As discussed in Chapter 1, the model should learn parameters that caused the change in

agents’ behavior when a certain set of rewards was applied to locations in the experiment

region. Learning those parameters will help us understand how agents behaved with a fixed

reward distribution, and will enable organizers to redistribute rewards based on that behavior.

Specifically, given datasets xt and yt of agents’ visit densities at time t, before and after

the rewards rt were placed respectively, we want to find the weights that caused the change

from xt to yt, considering possible influence from environmental factors f and distances

between locations D. Although the previous study proposed to learn a single set of weights w

(5), our proposed model considers two sets of weights w1 and w2 as it may theoretically result

11

into higher accuracy and lower loss value. Mathematically, the model can be formulated as:

minimize
w1,w2

ZI(w1,w2) =
∑
t

(ωt(yt −P(f , rt; w1,w2)xt))
2

(2.1)

where ωt is a set of weights (not a learnable parameter) at time t capturing penalties relative

to the priority of homogenizing different locations at time t. In other words, it highlights if

the organizer wishes higher homogeneity at one time unit over another. Elements pu,v of P

are given as (Θi substituted for wi
T
v):

pu,v =
exp(Θ2 · reLU(Θ1 · [du,v, fu, ru]))∑
u′ exp(Θ2 · reLU(Θ1 · [du′,v, fu′ , ru′]))

=
exp(Γu,v)∑
u′ exp(Γu′,v)

= softmax(Γu,v) (2.2)

To optimize the loss value ZI(w1,w2), the neural network learns the set of weights

through multiple epochs of backpropagating the loss using gradient descent. Furthermore, the

program preprocesses the dataset to avoid unnecessary sub-epoch iterations, and to promote

batch operations on tensors.

2.1.1 Structure of Input Dataset for Identifying Weights

Since preprocessing the dataset reduces data operations during model execution, the input

dataset, comprising of distance between locations D, environmental features f , and given

rewards rt (all normalized), is built into a tensor (Figure 2.1a) such that operations can be

performed on batches of slices F[v].

Another advantage of building the dataset as a tensor comes with the PyTorch library,

which provides convenient handling and transfer of tensors residing on the Main Memory

and GPUs’ internal global memory (8). Algorithm 1 describes the steps to construct this

dataset. During implementation, we preprocess the F dataset to reduce computation time

during model runs (Appendix A.1.1).

2.1.2 Minimizing Loss for the Identification Problem

As shown in Figure 2.2, the neural network is made of 3 fully connected layers — the

input layer, the hidden layer with rectified Linear Units (reLU), and the output layer with

12

(a) A Tensor representing the Input Dataset F

(b) Contents of F[v][u]: This vec-

tor (length nF) contains quantified

causes for the change in agents’ be-

havior from xt to yt

Figure 2.1: Visual representation of the Identification Problem’s Input Dataset

Algorithm 1 Constructing the Input Dataset

1: function Build-Dataset(D, f , rt)

2: D← Normalize(D) . D[u][v] is the distance between locations u and v

3: f ← Normalize(f , axis = 0) . f [u] is a vector of env. features at location u

4: rt ← Normalize(rt, axis = 0) . rt[u] is the reward at location u

5: for v = 1, 2, . . . , J do

6: for u = 1, 2, . . . , J do

7: F[v][u]← [D[v][u], f [u], rt[u]] . As depicted in Figure 2.1b

8: return F

13

softmax(·) function units. The network can also be visualized as a stack of 1-dimensional

layers (Figure 2.2b), with the softmax(·) calculated on the stack’s output.

It is important to clarify that the network, which takes in F[v] as shown in Figure 2.2a,

is a slice of the original network, which takes in the complete tensor F, and computes the

complete result PT per iteration of t. In other words, the input and the hidden layers are

3-dimensional, and the output layer is 2-dimensional. Since it is difficult to visualize the

complete network on paper, slices of the network are depicted in Figure 2.2a. Algorithm 2

details the steps for learning the parameters w1 and w2 based on Equations (2.1) and (2.2).

Algorithm 2 Algorithm for the Identification Problem

1: w1 ← Random((J, nF , nF)) . w1 has dimensions J × nF × nF

2: w2 ← Random((J, nF , 1)) . w2 has dimensions J × nF × 1

3: for e = 1, 2, . . . ,Epochs do

4: loss← 0

5: for t = 1, 2, . . . , T do

6: F← Build-Dataset(D, f , r[t]) . Defined in Algorithm 1

7: H← reLU(Batch-Multiply(F,w1))

8: O← softmax(Batch-Multiply(H,w2))

9: P← OT

10: loss← loss + (ω[t](y[t]−P · x[t]))2

11: Gradient-Descent(loss,w1,w2)

12: w1,w2 ← Update-Using-Gradients(w1,w2)

13: Log-Info(e, loss)

2.2 Pricing Problem

After learning the set of weights w1 and w2, highlighting the change in agents’ behavior to

collect observations, the Pricing Problem aims to redistribute rewards to the all locations such

that the predicted agents’ behavior, influenced by the new set of rewards, is homogeneous.

14

(a) 3-dimensional View of the Network Slice, Taking in F[v]

(b) Side View of the Network: Output of one such cross-section is pui,v

Figure 2.2: Neural Network Designed for the Identification Problem

15

Thus, given a budget of rewards R, this optimization problem can be expressed as:

minimize
r

ZP (r) =
1

n
‖y − y‖

subject to y = P(f , r; w1,w2) x∑
i

ri ≤ R

ri ≥ 0

(2.3)

where elements of P are defined as in Equation (2.2).

To allocate the rewards r, the calculations for the pricing problem are akin to that for

the Identification Problem (see Section 2.1). However, since only 1 set of rewards need to be

optimized, we use an altered 2-layer (input and output layers) network instead of the 3-layered

network used for the Identification Problem. While Equation (2.3) looks like a typical Linear

Programming problem, only a part of the formulation uses LP to constrain the rewards. We

calculate P using a 2-layered network that minimizes the loss function ZP (r) using gradient

descent, and constrain the rewards using linear programming. Fundamental processes are

described below, whereas specific implementation details are described in Appendix A.

2.2.1 Input Dataset for Finding Rewards

Since it is the set of rewards r that need to be optimized, they must serve as the “weights” of

the network (“weights” here refer to the weighted edges of this network and not to the set of

calculated weights w1 and w2). Therefore, the rewards r are no longer fed into the network

but are its characteristic. Instead, the calculated weights w1 are fed into the network, and

are “weighted” by the rewards.

The observation density datasets (x and y) are also aggregated for all agents such that

they give information in terms of locations u only. This is also why rewards vector r does not

depend on t — we want a generalized set of rewards for all time t per location u. Therefore,

the algorithm for constructing F (see Section 2.1.1) is same as Algorithm 1 but with a change

— rt replaced by r.

16

2.2.2 Calculating Rewards

Algorithm 3 for finding P is very similar to Algorithm 2’s first few steps but without any

epochs of t. Also, since the model would predict y, it does not need labels y as a dataset.

Algorithm 3’s logic flow is depicted in Figure 2.3 to supplement understanding.

Figure 2.3: Logic Flow of Algorithm 3

Algorithm 3 Solving the Pricing Problem

1: function Forward(D, f , r,w1,w2,x)

2: F← Build-Dataset(D, f , r) . Defined in Algorithm 1

3: O1 ← reLU(Batch-Multiply(F,w1))

4: O2 ← softmax(Batch-Multiply(O1,w2))

5: P← OT
2

6: y← P · x
7: return ‖y − y‖/J

Main Script

8: r← Random((J)) . r has dimensions J

9: loss← Forward(D, f , r,w1,w2,x)

10: for e = 1, 2, . . . ,Epochs do

11: Gradient-Descent(loss, r)

12: r← Update-Using-Gradients(r)

13: r← LP(r,R) . LP(·) explained in Section 2.2.3

14: loss← Forward(D, f , r,w1,w2,x)

15: Log-Best-Rewards(loss, r) . Record r with the lowest loss yet

2.2.3 Constraining Rewards

After updating the rewards, the program constrains them using LP(·) such that
∑

i ri ≤ R

and ri ≥ 0. The LP(·) finds another set of rewards r′ such that the absolute difference

17

between new and old rewards (
∑

i |r′i − ri|) is minimum. The mathematical formulation is

given in Equation (2.4), which was implemented using SciPy’s Optimize Module (13). Since

the module supports a standard format for doing linear programming, Equation (2.5) is used

(see Appendix A.1.2), which is mathematically equivalent to Equation (2.4).

minimize
r′

∑
i

|r′i − ri|

subject to
∑
i

r′i ≤ R

ri ≥ 0

(2.4)

minimize
[r′,u]

∑
i

ui

subject to r′i − ri ≤ ui

ri − r′i ≤ ui∑
i

r′i ≤ R

r′i, ui ≥ 0

(2.5)

We make a tradeoff by constraining rewards using LP instead of Mixed Integer Program-

ming, which was used by the previous study (5). The tradeoff exists between decreasing the

computation time and loosening integer constraints on each reward value. While model-learned

integer rewards have worked in real-life testing (5), we cannot say if allowing non-integer

values in rewards would produce better or comparable results in real-life, corresponding to

the model’s prediction. In other words, we can’t ensure the predicted rewards’ effectiveness

in ground testing before actually deploying them in the game. Nevertheless, we can estimate

how good the predictions can be compared to several baseline indicators. These baseline sets

are elaborated in Section 3.5.1.

18

Chapter 3

Experiment Specifications

Definition 1. GPU Speedup: Ratio of model’s execution time with GPU “set” to that with

CPU “set”. The script’s data preprocessing runtime is ignored but the time taken to transfer

data from CPU to GPU is included in calculating GPU “set” time elapsed. (Speedup =

CPU−time
GPU−time + Transfer−time

)

We conducted several tests for optimization and GPU Speedup to test both our models.

After initializing all parameters randomly (with specific seeds for reproduction and uniformity

between tests), the models were run for 1000 or 10000 epochs depending on the complexity

of the model.

3.1 Datasets

We conducted two types of tests: optimization tests on original datasets and GPU

Speedup tests on randomly generated datasets. Data was loaded or generated as

Floating Point 32 (FP32) units but was stored with less precision (up to 15 significant figures)

to reduce secondary memory usage.

The original dataset available from eBird observations contained 173 time units (T) and

116 Avicache locations (J) (3). For the GPU Speedup runs, a random dataset of 173 time

units (T) and 232 locations (J) was generated beforehand using NumPy (without any seed).

The number of locations in the random dataset was higher than that in the original dataset

to aim for a clear trend if the models were to be scaled. We believe that speedup tests on

19

original datasets would give similar results, though we used randomly generated datasets

because the original dataset could not be flawlessly extrapolated. The models were timed for

the executed operations in a neural network and the LP, including transfer times of tensors

between the RAM and GPU’s internal memory. Time taken for preprocessing was ignored.

3.2 Test-Machine Configuration

Hardware specifications and software versions used for the experiments are listed in Table 3.1.

Though we couldn’t eliminate extraneous computing usage by background processes on the

test-machine, we restricted it by switching off X (Graphical User Interface for Ubuntu OS) and

performing tests in CLI (Command Line Interface), and ending user processes. One should

obtain similar GPU Speedup results when repeating the experiments, though background

processes and threads might give varying runtime values.

Table 3.1: Hardware Specifications and Software Versions Used for Experiments

Hardware
Type Unit/Specs

Desktop Dell Precision Tower 3620
CPU Intel Core i7-7700K1

RAM 16GB
GPU NVIDIA Quadro P40002

Software
Library/Package Version

Ubuntu OS 16.04.2 LTS x86 64
CUDA 8.0
cuDNN 5.1.10
MKL 2017.0.3

Python 2.7.13 (Anaconda)
PyTorch 0.1.12 2
NumPy 1.12.1
SciPy 0.19.0

GPU “set” and CPU “set” Clarification By GPU “set” we mean distributing opera-

tions in the scripts between CPU and GPU, while by CPU “set” we mean that the operations

were executed only on the CPU. Since GPUs are inferior than CPUs at handling most

operations other than simple arithmetic matrix ones due to parallelism (see Section 1.3),

we used — and recommend using — both the CPU and the GPU in GPU “set” to handle

operations each is superior at (useful for large datasets). However, since the models in

1Hyper-threaded with 4 cores, 8 threads @ 4.20-4.50 GHz
21792 CUDA Cores @ 1.2-1.5 GHz

20

Algorithms 2 and 3 (not the full scripts) primarily comprise of arithmetic operations on

tensors, it is clear that they were executed on the GPU when it was “set” and on the CPU

when the CPU was “set”. Other than this optimization, we did not specifically design any

parallelized algorithm for either configurations, relying on the PyTorch’s and NumPy-SciPy’s

inbuilt implementation.

3.3 Algorithm Choice

On the algorithm side, we used Adam’s algorithm for Gradient-Descent(·), after testing

performances of several algorithms3 including, but not limited to, Stochastic Gradient Descent

(SGD) (14), Adam’s Algorithm (15) and Adagrad (16). In Chapter 4, we only discuss and

show tests using the Adam’s algorithm, since it was found to work best with both models

over all test runs.

3.4 Running the Identification Problem’s Model

3.4.1 Optimizing the Original Dataset

The 3-layered neural network was run for 10000 epochs on the original dataset, which

was split 80:20 along (T) for training and testing sets, with different learning rates =

{10−2, 10−3, 10−4, 10−5}. Since we were aiming for optimization, we ran multiple tests (5

different seeds with each learning rate) of the model only with the GPU “set”.

To compare this model’s optimization results with other model structures, the previously

studied 2-layered network (5) and a 4-layered neural network were used. The 4-layered

network had another hidden layer with reLU, equivalent to the hidden layer in the current

3-layered network in Figure 2.2a. The results from the 2-layered network were obtained from

the previous study, and those from the 4-layered network were attained on the same original

dataset with same specifications (learning rates, epochs etc.).

3PyTorch lets you choose the corresponding function/module

21

3.4.2 Testing GPU Speedup on the Random Dataset

After generating a random dataset and splitting it 80:20 for training and testing (to emulate

testing on the original dataset), we ran our 3-layered model with different batch-sizes

J = {11, 37, 63, 90, 116, 145, 174, 203, 232} (T = 173) and different seeds with both GPU

and CPU “set”, logging the elapsed time for model execution. The total time elapsed was

averaged for a batch-size on a device, which were used to generate scatter/line plots (see

Section 4.1.2).

3.5 Running the Pricing Problem’s Model

3.5.1 Optimizing the Original Dataset

After obtaining the set of weights w1 and w2 optimized using different seeds, we tested to

find the best rewards (with the lowest loss — Equation (2.3)) with random r initialization.

To obtain the best rewards, the model was run on all sets of weights obtained from the

Identification Problem for 1000 epochs with different learning rates. In search for the best

rewards with the minimum loss, we took this approach:

1. Run differently seeded rewards on all sets of weights obtained from the Identification

Problem, and identify a set of weights which performed better than the others (low ZI

— Equation (2.3)) on average. The learning rate was fixed to 10−3 in this case.

2. Use that set of weights to run a number of tests with varying seeds and learning rates

= {10−2, 5 × 10−3, 10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5}, and choose the rewards that

gave the lowest loss value ZI during execution4.

Two sets of rewards were tested for loss values as baseline comparisons to our model —

a randomly generated set, and another with elements inversely proportional to the number of

visits at each location. While the former was a random baseline, the latter captured the idea

of allocating higher rewards to relatively under-sampled locations. The best loss values were

compared for all tests with the baselines.

4This means that we selected the rewards before completion if the loss at that epoch was lower than that
in the end.

22

3.5.2 Testing GPU Speedup on the Random Dataset

Initially, we ran the Pricing Problem’s model with different batch-sizes J = {11, 37, 63, 90, 116}

(T = 173), different seeds with both GPU and CPU “set”, and learning rate = 10−3

for 1000 epochs. Since we couldn’t find a clear trend, we tested on more locations J =

{145, 174, 203, 232}.

We relied on SciPy’s Optimize Module to solve our LP sub-problem (see Section 2.2.3)

because PyTorch does not provide a GPU-accelerated Simplex LP solver. Since SciPy’s

implementation does not utilize the GPU, we expected the LP problem to be executed on

the CPU, thus delivering equal runtimes in both GPU and CPU “set” configurations.

23

Chapter 4

Results

4.1 Identification Problem’s Results

4.1.1 Optimization Results

Running the 3-layered network with the GPU “set” with different learning rates on different

seeds for 10000 epochs showed that the model was constantly giving lower loss values

(Equation (2.1)) with learning rate = 10−3.

We observed that higher learning rates (> 10−2) could only decrease the loss value to a

limit, after which the updates in the weights caused the loss function to oscillate and increase.

On the other side of 10−3, lower learning rates took too long to train. This phenomena is

exemplified in Figure 4.1, which shows plots of different runs with the same seed but different

learning rates. Runtime for the model on 10000 epochs was 1232.56 seconds (average over 20

runs = 5 seeds × 4 learning rates), and models with learning rates less than 10−3 did not

perform better than those with learning rate = 10−3 on any run. Although there was constant,

gradual decrease in test losses for learning rates less than 10−3, we argue that models with

those specifications may be computationally expensive and temporally inconvenient to train.

Observing that the average test loss values of learning rate = 10−3 is the lowest, we com-

pare its results with the previous study’s 2-layered network, historical data (5, Table 1), and

the 4-layered network with learning rate = 10−3 (see Section 3.4.1). As depicted in Figure 4.2,

our 3-layered neural network outperformed the 2-layered model by 0.14 units in loss value,

24

Figure 4.1: Test Loss Plots of Different Learning Rates to Find Weights: Learning rates lower than

10−3 couldn’t reach the loss value attained by the model at learning rate = 10−3 even after 10000

epochs.

2-layer 3-layer 4-layer Historical
0

0.1

0.2

0.3
0.26

0.12

0.23

0.36

0.03
0.06

Models

L
os
s
V
al
u
e

Test Set
Training Set

Figure 4.2: Comparison of Loss Values from

Different Models of the Identification Problem:

Loss values for the training set are inevitably

lower than that for the test set, which is the

basis for comparison.

Figure 4.3: Predicted Probabilities of Agents

Visiting Each Location Plotted on a Map (Lat-

itude, Longitude) Representing Tompkins and

Cortland Counties, NY: Dark dots represent

high prediction of visits. This can be compared

to the plots for the 2-layered network and other

models (5, Figure 3).

25

Table 4.1: Loss Values Calculated for Different Models for Identification Problem: For both the 3-

and the 4-layered models, learning rate = 10−3 outperformed other learning rates. Consequently,

that learning rate is used in comparison with other models in Figure 4.2.

Learning Rate
Average Test Loss Values
3-layered 4-layered

10−2 0.168 ± 0.068 0.494 ± 0.083
10−3 0.119 ± 0.016 0.228 ± 0.048
10−4 0.151 ± 0.040 0.237 ± 0.067
10−5 0.212 ± 0.040 0.320 ± 0.067

and also produced better results (0.12 units less) than the 4-layered model.

We also generated the predicted probabilities of the agents visiting each location (Px)

during time units in the Test Set, and plotted it onto maps marked by the locations’ latitudes

and longitudes. Figure 4.3 shows such a plot generated by the 3-layered network, where each

dot represents a location.

(a) Plot for 3-layered Model (b) Plot for 4-layered Model // todo

Figure 4.4: Train and Test Loss Values’ Plots of Different Models: Both networks learn the set of

weights quickly, as displayed in the steep descent in loss values before ≈ 1000 epochs. This quick

learning is due to the choice of Gradient-Descent(·) function — Adam’s algorithm (15). Other

algorithms like SGD (14) and Adagrad (16) learn relatively slowly.

To check if the model was overfitting at learning rate = 10−3, we plotted loss values at

the end of each epoch for all tests. Although there remained a difference of 0.09 loss units in

the values of training and testing set, the 3-layered model was not drastically overfitting as

26

an average end difference of 0.0876± 0.0159 loss units persisted for many epochs, instead of

increasing and tuning more to the training set.

Even though one would expect overfitting with more tuned parameters, the 4-layered

model also produced an average end difference of 0.01677± 0.0473 loss units, which persisted

during the run. Figure 4.4 shows the results of a randomly selected experiment with plots of

loss values at each epoch for the both networks.

4.1.2 GPU Speedup Results

Running on batches of sizes J = {11, 37, 63, 90, 116, 145, 174, 203, 232} on a randomly gen-

erated dataset for 1000 epochs with both GPU and CPU “set” separately, we obtained

information on full execution runtimes (combining training and testing runtimes). The aver-

age results (over 3 seeds for each batch) are plotted in Figure 4.5, which show promising GPU

Speedup figures for bigger dataset batches; the GPU Speedup varied from 0.94 to 10.32

on all tested batch-sizes.

4.2 Pricing Problem’s Results

4.2.1 Optimization Results

Taking the approach mentioned in Section 3.5.1, we obtained consistent loss values for each

set of weights (even with differently seeded rewards). The best performing set of weights was

set-2, using which the average loss value for the Pricing Problem hovered around 0.0079%.

Next, running differently seeded rewards with different learning rates on set-2 of weights, we

obtained the lowest loss value of 0.0069%.

Table 4.2: Loss Values Calculated from Different Sets of Rewards: The values are small because the

loss function ZP (r) (Equation (2.3)) is averaged over the number of locations.

Rewards Obtained From Best Loss Values (In %)
Model’s Prediction 0.0069

Random Initialization 0.0331
Proportional Distribution 0.0235

27

11 37 63 90 116 145 174 203 232

0

500

1000

1500

2000

2500

3000

95.32 202.10
391.45

654.24

999.53
1,248.27

1,748.61

2,279.90

2,777.15

100.77 101.09 101.55 100.62 109.77 137.35 169.53 224.14 269.20

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(a) Time Taken by the Full Model: GPUs can sustain calculations without increase in runtime

for small datasets (upto J = 116 in this case). This may be because of underutilization of GPU

resources for small datasets (fewer threads needed). On the other hand, full utilization results in a

steady increase in runtime, as seen in the upward slope trend after J = 116.

1 2 3 4 5 6 7 8 9 10 11

11

37

63

90

116

145

174

203

232

0.94

2.00

3.85

6.50

9.10

9.09

10.31

10.17

10.32

GPU Speedup

B
at
ch
-S
iz
e
J

(b) GPU Speedup for the Identification Problem: We see the GPU performing operations much faster

for bigger datasets. The absence of drastic speedup for smaller datasets highlights the inferiority of

GPUs for tiny models, which is often caused due to dominating transfer times.

Figure 4.5: Finding Weights — Execution Times of Different Batch-Sizes J with GPU and CPU “set”

Separately: The GPU delivers faster computation than CPU even as the datasets’ sizes grow — the

speedup is 0.94− 10.32 depending on the tested dataset’s size. Also, the error bars are indiscernible

because they are too small (< 1%).

28

Compared to the proportional reward distribution (loss values calculated using set-2 of

weights), our model’s set of rewards produced loss value ≈ 3 times lower. Table 4.2 lists the

best loss values obtained on each type of reward allocation (model’s predicted, random and

proportional — Section 3.5.1).

4.2.2 GPU Speedup Results

After running on different batch-sizes J = {11, 37, 63, 90, 116, 145, 174, 203, 232}, we did not

observe drastic GPU speedup for the full model. Figure 4.6a shows the Speedup trend:

GPU Speedup for the full model was a meager 1.12 − 1.60.

As the the low GPU Speedup was disappointing, we looked for operations that were

causing the program to slow down on the GPU. Since the 2-layered network was quite small,

we suspected the LP problem (Equations (2.4) and (2.5)) to influence the runtimes. Thus, we

recorded execution times for both the neural network and the LP separately. As we suspected,

the LP did impact the runtime more than the neural networks did, and accounted for ≈ 94%

of the total model runtime (Figure 4.6). However, the GPU Speedup in LP runtime was

unusual.

Strange GPU Speedup in LP Computation

The Speedup is exceptional as we intentionally transferred the needed matrices/tensors to the

CPU for solving the LP using Simplex. Since SciPy’s Optimize Module uses a single CPU

core and does not utilize the GPU, we expected similar runtimes for both configurations.

Our efforts to determine the reasons for this speedup are collected in Appendix B instead of

digressing here. As stated later in this section, we disregard the old GPU Speedup results for

finding rewards and use the more suited ones.

Since Algorithm 3 performs operations sequentially (Calculate loss → Gradient-Descent

and Update r → Constrain using LP), we suggest these possibilities:

1. The 2-layered network is parallelized but scipy.optimize’s LP solver is not. Since

both sub-problems are solved by independent frameworks, we could not thread the

29

11 37 63 90 116 145 174 203 232

0

200

400

600

9.95
41.70

83.69
144.59

234.69
299.91

390.79

510.15

651.64

8.79 29.43 55.59
94.10

146.63

223.77

323.67

432.95

581.69

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(a) Time Taken by the Full Model: GPU Speedup over all batch-sizes is only 1.12 − 1.60.

11 37 63 90 116 145 174 203 232

0

200

400

600

9.14
40.15

81.03
140.40

228.46
289.98

379.11

494.61

631.07

6.50 26.82 52.63
90.71

142.91

219.35

318.93

427.58

574.45

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(b) Time taken by the LP: GPU Speedup over all batch-sizes varies 1.10 − 1.60. As discussed in

Section 4.2.2 and Appendix B, we shouldn’t have witnessed this speedup as both configurations’

LPs were computed on the CPU. Hence, we expected the GPU Speedup value for LP to be ≈ 1.

Figure 4.6: Finding Rewards — Execution Times of Different Batch-Sizes J with GPU and CPU

“set” Separately

30

whole algorithm without implementing OpenMP (17) back-end manually and allowing

multiple copies of the script to run simultaneously. Currently, the LP problem acts as

a shared resource and requires all neural network’s threads to synchronize. This might

cause time lag as the LP waits for all elements/matrices to become fully available.

2. The simultaneously threads downgrade the LP solver’s performance. We do not endorse

this possibility because the CPU resources are independent when using multi-threading

over CPU’s cores. We checked if the same script running simultaneously on another

core hampered the performance of the original copy, but did not witness any reduction.

We found that the LP in CPU “set” was slower than normal because of latency in thread

synchronization1 (Appendix B.4). While one might contend the lack of this behavior in GPU

“set”, we reiterate that we intentionally impose a synchronization barrier when transferring

the matrices to the CPU after the network has been executed, adding the time elapsed in

the network’s time logs. This is not case with CPU “set” because the network remains in

execution in other cores while the LP has started. Therefore, when we restrict the script’s

access to a single CPU core, we do not witness any GPU Speedup in LP runtime. This only

affects CPU “set” performance because the GPU “set” configuration independently executes

the network on the GPU.

Final Results

The results after restricting the script’s access to a single CPU core are plotted in Figure 4.7.

We prefer using the results after restricting access as it gives the better performance for

CPU “set”. The time elapsed for the Neural Network includes time taken to transfer tensors

to and from the GPU, which results in overhead — as seen in higher runtimes for smaller

datasets in Figures 4.7c and 4.7f. However, as the batch-size increases, we see computation

time dominating over the transfer time, resulting in higher CPU “set” runtimes.

Moreover, the LP subproblem highly impacts the full model, accounting for more than

94% of the total runtime. Therefore, even though the Neural Network gets sped up at bigger

datasets, its GPU Speedup is not reflected in the full model.

1Pytorch uses OpenMP (8; 17) when the CPU is “set”, which threads the 2-layered network.

31

11 37 63 90 116 145 174 203 232

0

200

400

600

7.03 28.25
54.18

93.34
147.15

225.92

322.61

438.17

583.95

8.52 29.64
55.25

94.02
146.52

218.42

317.33

430.61

573.49

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(a) Time Taken by the Full Model: GPU Speedup over all batch-sizes is only 0.82 − 1.03 — heavily

impacted by LP runtimes.

11 37 63 90 116 145 174 203 232

0

100

200

300

400

500

600

6.42 27.16
52.34

90.18
142.46

218.63

313.16

425.66

567.86

6.37 27.15
52.42

90.81
142.90

214.30

312.71

425.38

567.77

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(b) Time taken by the LP: GPU Speedup over all batch-sizes is ≈ 1. Expectedly, there is no GPU

Speedup in LP runtimes.

32

11 37 63 90 116 145 174 203 232

0

2

4

6

8

10

12

14

16

18

0.61 1.09
1.84

3.16

4.69

7.28

9.45

12.51

16.08

2.15 2.49 2.84 3.21 3.62 4.11 4.62
5.23 5.72

Batch-Size J

T
im

e/
s

CPU “set”
GPU “set”

(c) Time taken by the Neural Network: GPU Speedup over all tested batch-sizes varies between

0.28 − 2.81 — as transfer time between RAM and GPU’s internal memory dominates for smaller

datasets. However, as batch-size increases, computation time dominates over transfer time — GPU

“set” performs better than CPU “set”.

0 0.5 1 1.5

11

37

63

90

116

145

174

203

232

0.82

0.95

0.98

0.99

1.00

1.03

1.02

1.02

1.02

GPU Speedup

B
at
ch
-S
iz
e
T

(d) Speedup for the Full Model

0 0.5 1 1.5

1.01

1.00

1.00

0.99

1.00

1.02

1.00

1.00

1.00

GPU Speedup

(e) Speedup for the LP

0 1 2 3

0.28

0.44

0.65

0.98

1.30

1.77

2.04

2.39

2.81

GPU Speedup

(f) Speedup for the Neural Network

Figure 4.7: Finding Rewards After Restricing Script’s Access to CPU Cores — Execution Times of

Different Batch-Sizes J with GPU and CPU “set” Separately: Scaling is strongly hampered by the

LP solver. Comparing the contributions of LP and Neural Network to total runtime on GPU “set”,

LP accounts for 94.42 ± 5.00% of the total time.

33

Chapter 5

Conclusion

Our models for the Identification and the Pricing Problem outperformed previously studied

ones (5) and other baseline comparisons (Sections 4.1.1 and 4.2.1 and Tables 4.1 and 4.2).

For the Identification Problem, the average loss value was 0.14 units lower than that of

the previous 2-layered model, and 0.12 units lower than that of the 4-layered model, giving

us better results than any other tested model. While we did not test deeper networks, we

contend that using more hidden layers will only aggravate overfitting and won’t provide

better results — as is partly the case with the 4-layered network. The Pricing Problem’s

model also delivered at least 3× lower loss values than other baseline comparisons for reward

distribution.

On the other hand, we can definitively conclude that the Identification Problem ran

0.94 to 10.32 times faster on the GPU than the CPU, mainly because the model was based on

tensors and a neural network, accelerated by a GPU and NVIDIA’s APIs. With the increasing

GPU Speedup of the Identification Problem with bigger datasets, we can scale to large datasets

more efficiently on the GPU than the CPU. The Pricing Problem’s neural network only

performed better with higher batch-sizes, with transfer times hampering performance on

smaller datasets. Although the Pricing Problem’s full model did not deliver a noticeable

speedup (with the LP problem heavily impacting the runtime), the 2-layered network for

finding rewards gave a speedup between 0.28 − 2.81. This shows that neural network are

inherently quick to optimize on a GPU only if the batch-sizes are large enough. This issue of

high transfer times was observed for the Identification Problem too (though not so starkly),

34

and is also discussed in Section 1.3 and recent literature (1; 10) (9, Appendix B). One may

infer that one can witness GPU Speedups only when transfer overheads are tiny compared to

computation time. To obtain even better performance with GPUs, faster GPUs like NVIDIA

Quadro GP100, and those based on the newer Volta architecture will most likely decrease

the models’ runtimes and help scale better. Clearly, there still exists enormous scope for

improvement in both more optimized results and faster computation.

5.1 Interesting Inferences

One may also notice compelling reflections from the results:

• One interesting observation in Table 4.2 is that the loss value from the Proportional

Distribution (0.0235%) and Random Initialization (0.0331%) are very close, highlighting

that the set of weights obtained from the Identification Problem are dependent on other

factors (f ,D) as well. In other words, only incentivizing under-sampled locations more is

as good as random distribution of rewards — as agents strongly consider environmental

features and distances between locations to make decisions.

• By looking at the model’s generated rewards (Table 5.1), one can infer that the model

chooses to place large rewards in very under-sampled locations, rather than distributing

more evenly over all locations. Although this non-uniform distribution is unintuitive

to the human perspective, it gives much lower results than proportionally allocated

rewards.

• Algorithms that use different libraries for sub-routines’ implementation can have diffi-

culty in parallelizing. As we saw with the unexpected GPU Speedup in LP runtimes in

the Pricing Problem (Section 4.2.2 and Appendix B), näıve synchronization barriers

can affect performance in CPUs’ multi-threading mechanism as well as GPUs’ threads.

Therefore, one might consider threading the full algorithm instead of using external

libraries for threading some sub-routines.

• GPUs are not always effective in executing all kinds of models. Factors that affect the

performance include the size of the model and datasets, extent of conditional statements

35

in the program, requirement of synchronization barriers, data transfer frequency between

RAM and GPU etc. When the models are increasingly simple and small, CPUs can do

a much better job than GPUs.

Table 5.1: Example Rewards Prediction by the Pricing Problem’s Model: The prediction is relatively

sparse and non-uniform. Parameters: R = 1000, Loss value = 0.0068%, Epochs = 1000, Learning

Rate = 5× 10−5, Weights: Set-2. (values rounded)

0.00 38.02 0.00 0.00 0.00 0.00 14.12 0.00 24.63 4.43 3.18 24.35 0.00 19.53 0.00
1.63 6.40 0.00 0.00 0.00 36.31 31.15 0.00 0.00 29.16 2.22 6.02 23.12 0.00 16.42
0.00 0.00 28.45 0.00 37.50 0.00 20.04 34.19 0.00 0.00 18.29 0.00 0.00 21.33 0.00
0.00 23.73 24.77 0.00 23.18 1.75 0.00 20.78 22.60 0.00 0.00 0.00 0.00 0.00 4.79
4.67 0.00 0.00 34.82 0.00 9.47 0.00 0.00 31.43 0.00 4.35 16.55 28.51 6.02 0.00
21.24 21.38 0.00 22.95 27.17 21.44 24.16 21.07 0.00 0.00 25.48 0.00 0.00 0.00 2.59
12.28 0.00 0.00 0.00 0.00 0.00 22.09 0.00 0.00 16.50 0.00 2.88 1.57 0.00 43.45
0.00 0.00 15.25 0.02 0.00 0.00 0.00 0.00 0.18 0.32 0.00

5.2 Limitations

We could not parallelize some sub-routines of Algorithms 2 and 3 and had to rely on PyTorch’s

implementation for the most part. While PyTorch’s implementation (8) may be very efficient,

we do not know if it suits our models best — a typical problem when using external libraries.

On the other hand, we did not venture in adjusting the model’s parameters much as

the models took long time to tests. Tinkering with the models’ characteristics might have

optimized the models more if we had devised a way to experiment efficiently. This also

remains a topic for future study.

We also could not venture in-depth of quirky behavior and ascertain reasons with high

confidence. Our research project limited us to focus on improving the Avicaching game,

restricting us from rigorously studying thread synchronization delays and GPUs’ architecture.

5.3 Further Research

There exist numerous possibilities for solving the problems better and faster — from more

complex models to better preprocessing to more parallel algorithms with fewer synchronization

36

barriers. Some important suggestions are listed below:

Choice of Gradient-Descent Algorithm

Figure 4.4a shows how the choice of Adam’s algorithm (15) for Gradient-Descent(·) helps

the model to learn quickly. However, we also witness long periods of saturation after a few

epochs. This was the case for several other algorithms (SGD (14) and Adagrad (16)) as well,

but with different paces of learning. Since the organizers would want to further optimize the

set of weights, research could be done on avoiding the long, unwavering saturation phase.

This may involve using other algorithms for Gradient-Descent(·) (Algorithm 2) and/or

altering the loss function (ZP — Equation (2.1)).

Modeling LP Differently to Reduce Runtimes

LP is a simple tool for optimizing different problems, with various algorithms for solving LPs

— Simplex, Criss-Cross and other Interior Point techniques. While it gives optimal results, it

can be computationally expensive if the matrices are large (as depicted in Figure 4.7b). One

can try several approaches to reduce computation time here:

• Implement GPU or OpenMP backend for the LP.

• Constrain rewards differently (Section 2.2.3). Parallelized algorithms for constraining

rewards can decrease the runtime for the Pricing Problem’s model considerably as the

current LP accounts for ≈ 94% of the total runtime.

37

Bibliography

[1] NVIDIA Developer Blog Contributors. Parallel For All Blog. [Online]. Available:

https://devblogs.nvidia.com/parallelforall/

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,” CoRR, 2014. [Online].

Available: https://arxiv.org/abs/1410.0759

[3] Cornell Lab of Ornithology. eBird. [Online]. Available: https://ebird.org/content/ebird/

about/

[4] Y. Xue, I. Davies, D. Fink, C. Wood, and C. P. Gomes, “Avicaching: A Two Stage

Game for Bias Reduction in Citizen Science,” in Proceedings of the 2016 International

Conference on Autonomous Agents & Multiagent Systems, ser. AAMAS. Richland, SC:

International Foundation for Autonomous Agents and Multiagent Systems, 2016, pp.

776–785. [Online]. Available: https://dl.acm.org/citation.cfm?id=2936924.2937038

[5] ——, “Behavior Identification in Two-Stage Games for Incentivizing Citizen Science

Exploration,” in Principles and Practice of Constraint Programming - 22nd International

Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings, 2016, pp.

701–717. [Online]. Available: https://doi.org/10.1007/978-3-319-44953-1 44

[6] NVIDIA. NVIDIA Deep Learning Resources. [Online]. Available: https://www.nvidia.

com/en-us/deep-learning-ai/developer/

[7] ——, CUDA Toolkit Documentation - Programming Guide, June 2017. [Online].

Available: https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

38

https://devblogs.nvidia.com/parallelforall/
https://arxiv.org/abs/1410.0759
https://ebird.org/content/ebird/about/
https://ebird.org/content/ebird/about/
https://dl.acm.org/citation.cfm?id=2936924.2937038
https://doi.org/10.1007/978-3-319-44953-1_44
https://www.nvidia.com/en-us/deep-learning-ai/developer/
https://www.nvidia.com/en-us/deep-learning-ai/developer/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[8] Torch and Pytorch Contributors, Pytorch Documentation. [Online]. Available:

https://pytorch.org/docs/0.1.12/

[9] D. A. Patterson and J. L. Hennessy, Computer Organization and Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann, 2016.

[10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demystifying

GPU Microarchitecture Through Microbenchmarking,” in Performance Analysis of

Systems & Software (ISPASS), 2010 IEEE International Symposium on. IEEE, 2010,

pp. 235–246.

[11] NVIDIA. Pascal Architecture Whitepaper. [Online]. Available: https://images.nvidia.

com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

[12] ——, CUDA Binary Utilities, June 2017. [Online]. Available: https://docs.nvidia.com/

pdf/CUDA Binary Utilities.pdf

[13] SciPy Community, SciPy Optimization Module Documentation. [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

[14] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent.

Heidelberg: Physica-Verlag HD, 2010, pp. 177–186. [Online]. Available: https:

//dx.doi.org/10.1007/978-3-7908-2604-3 16

[15] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” CoRR, 2014.

[Online]. Available: https://arxiv.org/abs/1412.6980

[16] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2010-24, Mar 2010. [Online]. Available:

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html

[17] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for Shared-Memory

Programming,” IEEE Computational Science and Engineering, vol. 5, no. 1, pp. 46–55,

Jan 1998. [Online]. Available: https://dx.doi.org/10.1109/99.660313

39

https://pytorch.org/docs/0.1.12/
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://docs.nvidia.com/pdf/CUDA_Binary_Utilities.pdf
https://docs.nvidia.com/pdf/CUDA_Binary_Utilities.pdf
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://dx.doi.org/10.1007/978-3-7908-2604-3_16
https://dx.doi.org/10.1007/978-3-7908-2604-3_16
https://arxiv.org/abs/1412.6980
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html
https://dx.doi.org/10.1109/99.660313

[18] SciPy Community, NumPy Documentation. [Online]. Available: https://docs.scipy.org/

doc/numpy-1.12.0/reference/index.html

[19] A. Kabra. Avicaching Summer 2017 Code Repository. Cornell University. [Online].

Available: https://github.com/anmolkabra/avicaching-summ17

[20] Arvind and R. A. Iannucci, Two Fundamental Issues in Multiprocessing. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1988, pp. 61–88. [Online]. Available:

https://doi.org/10.1007/3-540-18923-8 15

40

https://docs.scipy.org/doc/numpy-1.12.0/reference/index.html
https://docs.scipy.org/doc/numpy-1.12.0/reference/index.html
https://github.com/anmolkabra/avicaching-summ17
https://doi.org/10.1007/3-540-18923-8_15

Appendix A

Implementation

The code for the study, including all scripts and plotted results, is available in a repository.

Both the Identification and the Pricing Problem were programmed in Python 2.7 using

NumPy 1.12.1, SciPy 0.19.0 and PyTorch 0.1.12 modules (18; 13; 8) [results plotted with

Matplotlib 2.0.2]. With some code optimizations, the input dataset F was built using

NumPy’s ndarray and PyTorch’s tensor functions. Since PyTorch offers NumPy-like code

base but with dedicated neural network functions and submodules, PyTorch’s relu and

softmax functions were used along with other matrix operations.

A.1 Specific Implementation Details

Among all the code optimizations in both models, some in that for the Pricing Problem

are worth discussing, as they drastically differ from Algorithm 3 or are intricate. Most

optimizations relevant to the Identification Problem are trivial and relate directly to those

for the Pricing Problem.

A.1.1 Building the Dataset F

Notice that we build the dataset F and batch-multiply it with w1 on each iteration/epoch

(lines 2-3 of Algorithm 3). Doing these steps is repetitive as most elements of F — distances

D and environmental feature vector f — do not change unlike rewards r. Moreover since w1

41

https://github.com/anmolkabra/avicaching-summ17

is fixed, Algorithm 3 would repetitively multiply the f and D components of F with w1. To

avoid these unnecessary computations, we preprocessed most of F by batch-multiplying with

w1 and only multiplied r with the corresponding elements of w1. Figure A.1 describes the

process graphically.

This preprocessing partly applies the Identification Problem’s model too. Since the

weights w1 are updated on each iteration/epoch, we cannot multiply them with parts of F

beforehand (Algorithm 2). However, we can combine D and f in the preprocessing stage and

simply append r[t] on each iteration, reducing execution time.

A.1.2 Modeling the Linear Programming Problem in the Stan-

dard Format

The scipy.optimize module’s linprog function requires that the arguments are in standard

LP format. As discussed in Section 2.2.3, Equation (2.5) resembles the standard format more

closely than Equation (2.4), but it may not be clear how so.

Considering u and r′ as variables x, Equation (2.5) translates into Equation (A.1) (J is

the number of locations).

minimize

0J

1J

T r′

u



subject to


IJ −IJ
−IJ −IJ
1T
J 0T

J


r′

u

 ≤


r

−r

R


r′i, ui ≥ 0

(A.1)

42

Figure A.1: Splitting and Batch Multiplying F and w1: This splitting is possible if one thinks of

these 3-D tensors as batches of slices 2-D matrices depicted by the dotted lines. For example, when

the top figure is split into horizontal batches, we multiply a J × nF with a nF × nF matrix.

43

Appendix B

GPU Speedup in LP Computation

Even though we intentionally transferred the rewards vector to the CPU and constrained it

using scipy.optimize module’s linprog function, we obtained an unexpected GPU Speedup

in the LP’s execution (see Section 4.2.2 and Figure 4.6b). Confounded by this weird behavior,

we wanted to pinpoint the reason(s). It was clear that scipy.optimize.linprog() could

not have differentiated between the configurations and delivered different results. However,

since this was not our study’s prime motive, we did not take a very rigorous quantitative

approach in determining the cause(s).

B.1 Possible Reasons for GPU Speedup

There could have been many reasons for this bizarre behavior, including but not limited to:

1. SciPy’s Optimize module differentiating between configurations. This can be ruled out

because the module could not have known the configuration during which it was called.

This is because only PyTorch’s tensors are executable on the GPU, whereas NumPy

tensors are operable on the CPU only1 (8; 18; 13). SciPy’s Optimize module identifying

the configurations is just supernatural.

2. CPU “set” exploiting more main memory than GPU “set”. We suspected that since

CPU “set” configuration’s operations were executed solely on the CPU, the residing

1We didn’t mind SciPy.Optimize using MKL, BLAS or any other linear algebra libraries. Even if it had,
there wouldn’t be a distinction between CPU and GPU “set” configurations!

44

datasets could have used more main memory than when GPU “set” was running. This

could have hampered the performance of LP with CPU “set”, as the LP had lesser

space to operate in. Unlike the 1st possibility, this would have meant that CPU “set”

was slowing down the LP, and not that GPU “set” was speeding up the LP.

3. Neural network in CPU “set” using more CPU threads than that in GPU “set”. The

Intel i7-7700K processor is quad-core with 8 threads. Since PyTorch uses OpenMP

(8; 17), a parallel processing API for CPUs, we fancied the neural network to run on

simultaneous processors/threads, thus either allowing less available threads for the LP

to run, or taking up CPU’s resources, or causing latency due to synchronization locks2.

B.2 LP Slowing Down or Speeding Up?

First we determined whether the LP runtime was being sped up in GPU “set” or slowed

down in CPU “set”. To test this, we created a copy of our Pricing Problem’s model, which

focused only on logging LP runtimes at each epoch. We used 100 locations, 20 time units, and

10 total features including distances and excluding rewards (all randomly initialized with a

single seed). For a baseline comparison, we scripted the same LP without the neural network,

which gave us the true runtimes for the LP (‘Only LP’ setting), without any involvement of

PyTorch modules or functions.

Comparing the former runtimes (CPU and GPU “set”) with ‘Only LP’ runtime, we

observed that the LP in the CPU “set” configuration took longer to execute than that in

‘Only LP’ setting during each epoch (Figure B.1). We also noticed little to no interaction

between the neural network in GPU “set” with the LP, as the runtimes of LP in GPU “set”

were similar to those of LP in ‘Only LP’ setting. This confirmed that CPU “set” was slowing

down the LP, and that GPU “set” was not speeding it up. But why?

2Algorithm 3 for the Pricing Problem is sequential in that calculated tensors have to be fully available
before LP starts — a ‘Fork and Join’ synchronization task (20, Section 2.2).

45

0 20 40 60 80 100 120 140 160 180 200

0.15

0.2

0.25

0.3

0.35

Epochs

T
im

e/
s

CPU “set”
GPU “set”
‘Only LP’

Figure B.1: LP Runtime Example for Different Configurations: LPs in both CPU and GPU “set”

start running slowly, but pick up speed after ≈ 20 epochs. A possible reason for spikes in CPU “set”

is given in Appendix B.4. The test was done on a random dataset for 200 epochs.

B.3 CPU and Main Memory Usage

While logging the LP runtimes, we also recorded an estimate of the amount of computer

resources both configurations were using. Using the top command in Ubuntu, we polled

the resource monitor every 0.1 seconds while the python script was running3. Figures B.2

and B.3 shows how much main memory and CPU resource each setting was using.

CPU Usage

We see that CPU “set” constantly used more than 4 out of 8 available threads during

execution, i.e., > 400% CPU usage, while GPU “set” only used a single thread. Also, since

we polled at every 0.1 second, and the LP took a minimum of 0.14 seconds (Figure B.1), the

data plotted in Figure B.2 must show resource use while the LP was running. Considering

that the LP in ‘Only LP’ setting only used a single thread (100%), it makes sense that GPU

“set” would use 1 thread for execution — the neural network operations were performed on

the GPU, leaving the CPU empty for management and LP.

3 Running processes were polled every 0.1 seconds — contributing to a ‘log’. The longer the script ran,
the more number of logs collected.

46

0 100 200 300 400
0

200

400

600

800

0 50 100 150 200 250
0

50

100

150

200

C
P
U

U
sa
ge
/%

0 50 100 150 200 250 300
0

50

100

150

200

Logs

Figure B.2: CPU Usage by Different

Configurations3: From top — CPU “set”,

GPU “set”, ‘Only LP’. CPU Usage for GPU

“set” and ‘Only LP’ are very similar as operations

other than the LP run on the GPU.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
0

2

4

6

8

10

M
ai
n
M
em

or
y
U
sa
ge
/%

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Logs

Figure B.3: Main Memory Usage by Different

Configurations3: From top — CPU “set”, GPU

“set”, ‘Only LP’. The neural network doesn’t oc-

cupy much main memory in CPU “set” — could

be due to Python/PyTorch’s garbage collection.

47

On the other hand, it is apparent that CPU “set” had multi-threaded operations running

simultaneously (#3 in Appendix B.1). Since we know from the ‘Only LP’ setting that the

LP only used a single thread, the other threads in CPU “set” must have been the neural

network. Although this counters our reasoning that the neural network threads should have

fully synchronized and terminated before the LP started, it seems that those threads were

still active. Therefore, PyTorch and OpenMP continued calculating for the neural network

even after the LP had started. Nevertheless, this activity does not impact correctness, as

found from optimization tests on CPU “set”4.

Main Memory Usage

GPU “set” was using 10 times as much main memory as CPU “set” or ‘Only LP’, in addition

to storing and operating on tensors in the GPU’s internal memory. Not only this is weird,

but it is also opposite of what we expected to happen: CPU “set” using more main memory

and hampering LP performance. It is contradictory that the LP performs better (even as

good as ‘Only LP’) on GPU “set” if we consider RAM usage as the reason — GPU “set”

uses a lot more main memory than CPU “set”. Clearly, main memory usage cannot be a

criterion for assessing LP performance on different configurations.

B.4 Parallelism Doesn’t Always Help

Now that we had determined that multi-processing/threading might be the root of the strange

GPU Speedup, we asked why. Were the simultaneous threads gobbling up valuable CPU

resources or were the neural network threads causing latency due to prolonged synchronization

delays?

Testing the first possibility was trivial enough — manually run LPs simultaneously on

different threads (in 4 available hyper-threaded cores) and see if they impact each other’s

performance. If they didn’t, multi-threading would prove independent in terms of CPU

resources, and there would be no reason to believe that simultaneous threads would eat up

4CPU “set” tests were done for optimization on original datasets to check this. Since we got the same
results as obtained for GPU “set” optimization tests in Section 4.2.1, the results are not shown in the report.

48

each other’s CPU resources. After running several instances of the LP on multiple threads

and cores, we found no impact of multi-processed scripts on each other when it came to CPU

resources. The scripts were unaffected by any other processes on other cores of CPU. One

might very well argue that the independence of the LPs in these tests does not highlight the

dependence of the LP to neural network in the Pricing Problem, and that these tests are

wrongly based. Well, we contend that the argument pertains to the second possibility in the

previous paragraph and not the first one.

CPU “set” was utilizing more than half of the available 8 threads, and we were concerned if

there was latency due to thread synchronization. Since we used scipy.optimize.linprog()’s

Simplex solver, which was distinct from PyTorch, this led to a ‘Fork and Join’ task-

synchronization requirement (20, Section 2.2) after the neural network was complete. We

suspected this causing latency as the LP waited for the neural network to finish. To test

this hunch, we ran the scripts with restricted access to CPU threads. Using the taskset

command in Ubuntu, we manually forced the script to use specific CPU threads. If CPU “set”

slowed down even after restriction, then there would not be synchronization delays. Whereas,

a gradual increase in execution time with the number of available threads would show that

more threads for the neural network create delays in LP’s execution.

Figure B.4 shows how the access to CPU’s threads affected the LP’s runtime. Clearly,

restricting access to a single thread avoids synchronization delays in the Fork and Join task,

allowing the LP to run faster on all epochs. Based on this finding, we restricted the Pricing

Problem model’s access to the all CPU threads, giving us better CPU “set” performance

(Section 4.2.2) and removing the unexpected GPU Speedup (Figures 4.7b and 4.7e).

Well, does it reduce the neural network’s performance (higher runtime due to lower

parallelism)? Shockingly, it does the opposite: increase the performance. Explaining this

phenomena requires in-depth understanding of PyTorch’s implementation with OpenMP, but

there can be some possibilities:

• More parallelism could result in competition between threads for RAM access (20,

Section 2.1).

• There could still be inconspicuous synchronization requirements in the network, caused

49

0 20 40 60 80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
im

e/
s

1 Thread
3 Threads
5 Threads
7 Threads

Figure B.4: LP Runtime Example with Restricted Thread Access: With only 1 thread accessible to

the whole script (neural network and LP), the LP performs as good as GPU “set” and ‘Only LP’

setting (Appendix B.2). We start seeing erratic synchronization delays for 3 threads, and constant

delays with more threads.

11 37 63 90 116 145 174 203 232

0

5

10

15

20

0.82 1.55
2.66

4.19
6.22

9.93
11.68

15.54

20.56

0.61 1.09 1.84
3.16

4.69

7.28

9.45

12.51

16.09

Batch-Size J

T
im

e/
s

Access to all threads
Restricted to 1 thread

Figure B.5: Neural Network’s Performance (CPU “set”) with and without Thread Access Restrictions:

Data from the Pricing Problem Tests in Section 4.2.2. Contrary to one’s expectation, using fewer

threads increases performance.

50

due to our algorithm’s structure.

We cannot ensure one of them nor deny any other possibility. This area requires further

research and we are open to suggestions. As for the results, we use the restricted access

results for CPU “set” to calculate GPU Speedups in Section 4.2.1.

51

	Introduction
	Avicaching
	Important Questions
	Solving Faster
	Better Results
	Adjusting the Model's Features

	Computation Using GPUs
	GPU Architecture
	Avoiding Specific Types of Operations in GPUs
	GPUs' Strengths

	Problem Formulation
	Identification Problem
	Structure of Input Dataset for Identifying Weights
	Minimizing Loss for the Identification Problem

	Pricing Problem
	Input Dataset for Finding Rewards
	Calculating Rewards
	Constraining Rewards

	Experiment Specifications
	Datasets
	Test-Machine Configuration
	Algorithm Choice
	Running the Identification Problem's Model
	Optimizing the Original Dataset
	Testing GPU Speedup on the Random Dataset

	Running the Pricing Problem's Model
	Optimizing the Original Dataset
	Testing GPU Speedup on the Random Dataset

	Results
	Identification Problem's Results
	Optimization Results
	GPU Speedup Results

	Pricing Problem's Results
	Optimization Results
	GPU Speedup Results

	Conclusion
	Interesting Inferences
	Limitations
	Further Research

	Implementation
	Specific Implementation Details
	Building the Dataset F
	Modeling the Linear Programming Problem in the Standard Format

	GPU Speedup in LP Computation
	Possible Reasons for GPU Speedup
	LP Slowing Down or Speeding Up?
	CPU and Main Memory Usage
	Parallelism Doesn't Always Help

