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Introduction

Citizen science programs outsource large-scale data collection, thus enabling re-
searchers to expedite scientific discovery and environmental conservation.
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Figure 1. A flow diagram for eBird, a citizen science program by the Cornell Lab of Ornithology.

Bias in Citizen Science

Although citizens assist in large-scale data collection, they collect data according
to their own motivations, rather than systematically providing scientific observa-
tions. These biases introduce sampling bias, and manifest in the form of undesir-
able spatio-temporal clustering of submitted observations.

This sampling bias can be tackled with
Principal-agent games. In these games,
researchers (principal) deploy incen-
tives, which could motivate citizens
(agents) to complete the most crucial
tasks, by factoring in the citizens’ rea-
soning process. For example, eBird re-
cently introduced the Avicaching game
to reward citizen scientists for visiting
previously under-sampled locations.

Figure 2. Spatial clustering in eBird submissions
before 2014 in the US.
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Figure 3. A Principal-agent game. The principal incentivizes agents to complete crucial tasks.
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Reducing Spatial Clustering

The principal must factor in agents’ preferences for tasks when allocating rewards.
In this two-stage problem, the problem of learning the agents’ behavior, with re-
spect to their preferences v and principal’s rewards r , is embedded in the problem
of distributing rewards to maximize the principal’s utility Up. The behavior and
rewards are subject to constraints Ba(v) and Bp(r ) respectively.

(Principal) r ∗ = argmaxr Up(v∗, r )
subject to Bp(r )
(Agents) v∗ = argmaxv Ua(v, r )

subject to Ba(v)

Deploy Rewards

Learn Agents’ Behavior v∗Identification Problem

Redistribute Rewards r ∗Pricing Problem

Problem Formulation

Identification Problem

Consider eBird as an example. We extract the number of agents’ visits to a lo-
cation u from the dataset before and after a reward rt ,u was applied during time
period t . The visit densities are denoted as xt,yt ∈ Rn respectively.
To learn how agents’ visits changed during t , we can learn amapping P : xt 7→ yt
such that Pxt ≈ yt . The entrypu,v in P is the probability of agents’ efforts shifting
from location v to u; the entry is thus a function of environmental features fu,
reward rt ,u, and the distance of v and u, all transformed by д with parametersw .

pu,v =
exp(д(fu,du,v, rt ,u;w))∑
u′ exp(д(fu′,du′,v, rt ,u′;w))

= softmaxv(д)[u]
w∗ = argminw

∑
t

yt − P f ,D,rt ;wxt
2
2

Pricing Problem
To reduce spatial clustering, the pricing
problem finds rewards that minimize vari-
ance ∥y −y∥1 in predicted visit densities
y = Px , where P is evaluated at w∗ and
x = x′

∥x′∥1,x
′ =

∑
t xt .

Additionally, the rewards must be non-
negative, sum to at most budget R, and can
only be placed at Avicaching locations given
by a, where au = 1 if u is an Avicaching loca-
tion, and 0 otherwise.

r∗ = argminr
1

n
∥y −y∥1

subject to y = P f ,D,w∗;rx

∀u, (1 − au)ru = 0

∀u, ru ≥ 0

∥r ∥1 ≤ R

Scaling Avicaching using Machine Learning

A previous study folded the identification problem as linear constraints into the
pricing problem by defining д (in expression for pu,v) as a linear transformation.
The pricing problem was then solved using a Mixed-Integer Programming (MIP)
solver, which scaled poorly as the number of locations in the game increased.
We generalize the formulation by using a deep neural network forд, and scale both
problems efficiently by harnessing Graphical Processing Units (GPUs).

Neural Network Architecture

We build the input as follows: F [v] is a n × m matrix such that F [v][u] =
[fu,du,v, rt ,u], a vector ofm features that could influence agents to shift fromv tou.
This input F [v] is then fed forward into the network, which repeatedly takes linear
combinations and applies non-linear functions to obtain P[v], as shown below.
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Figure 4. A 3-layer neural network for the identification problem. s is the softmax function, and ai
are non-linear “activation” functions. ηev is a regularizer (ev[u] = 1 if v = u and 0 otherwise) that
controls how much P[v] looks like ev .

The neural network model is essentially a sequence of batch-matrix operations
that can be parallelized on GPUs. We can learn w∗ and r∗ using gradient descent
updates on the same backpropagation framework. As shown below, the learned
w∗ from the identification problem become inputs to the pricing problem, which
tunes the rewards r to minimize the pricing problem objective.
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Figure 5. Tensor representations of the identification (left) and the pricing (right) models. Dark
blue tensors are static and red are optimizable. On the top-left are directions of dimensions.

Results

We compare our GPU-run models’ performance and speed with those from previ-
ous studies (n = 116 locations,m = 35 total features, T = 182 time periods).

Loss Runtime (s)
Random 1.014 —
Random Forest 0.491 26.4
BFGS 0.374 507.3
2-layer 0.366 48.0
6-layer 0.358 647.8

Table 1. Identification problem. We split the
dataset along t as 75-5-20 train-valid-test sets
and report the test loss values for different
models (lower the better). Compared to the
state-of-the-art BFGS-based model, our
networks perform better while taking less time.

2-layer 6-layer
Learned 1.073 1.025
MIP 1.110 —
Random 1.169 1.303

Table 2. Pricing problem. Comparing the
normalized objective, 1n

∥y−y∥1
y

(lower the better),
on different reward allocation schemes, we see
that 2- and 6-layer networks better optimize the
objective than the MIP formulation. The MIP
formulation takes ≥ 36,000 seconds to run, while
the GPU-run 6-layer network completes 10,000
iterations in 44.45 seconds.

In both problems, we perform better than the previous state of the art while taking
less time; our models are more than 800x faster than MIP in the pricing problem.
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