Introduction

Citizen science programs outsource large-scale data collection, thus enabling re-
searchers to expedite scientific discovery and environmental conservation.
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Figure 1. A flow diagram for eBird, a citizen science program by the Cornell Lab of Ornithology.

Bias in Citizen Science

Although citizens assist in large-scale data collection, they collect data according
to their own motivations, rather than systematically providing scientific observa-
tions. These biases introduce sampling bias, and manifest in the form of undesir-
able spatio-temporal clustering of submitted observations.

This sampling bias can be tackled with
Principal-agent games. In these games,
researchers (principal) deploy incen-
tives, which could motivate citizens
(agents) to complete the most crucial
tasks, by factoring in the citizens’ rea-
soning process. For example, eBird re-
cently introduced the Avicaching game
to reward citizen scientists for visiting Figure 2. Spatial clustering in eBird submissions
previously under-sampled locations. before 2014 in the US.
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Figure 3. A Principal-agent game. The principal incentivizes agents to complete crucial tasks.
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Reducing Spatial Clustering

The principal must factor in agents’ preferences for tasks when allocating rewards.

In this two-stage problem, the problem of learning the agents’ behavior, with re-
spect to their preferences v and principal’s rewards r, is embedded in the problem
of distributing rewards to maximize the principal’s utility U,. The behavior and
rewards are subject to constraints B,(v) and B,(r) respectively.

(Principal) r* = argmax, U,(v", 1)
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Problem Formulation

Identification Problem

Consider eBird as an example. We extract the number of agents’ visits to a lo-
cation u from the dataset before and after a reward r; , was applied during time
period t. The visit densities are denoted as x¢, y; € R" respectively.

To learn how agents’ visits changed during ¢, we can learn a mapping P : x; — y;
such that Px; = y;. The entry p, ., in P is the probability of agents’ efforts shifting
from location v to u; the entry is thus a function of environmental features f,,
reward 7; ,, and the distance of v and u, all transformed by g with parameters w.

exp(g(fu, du,va Vtu; W))

Puo = Zu/ eXp(g(fu’a du’,09 Vs W))
= softmax,(g)|u]
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To reduce spatial clustering, the pricing
problem finds rewards that minimize vari-
ance ||y —y||; in predicted visit densities

1 _
y = Px, where P is evaluated at w* and r* = argmin. —|ly —yl||,
x=2_x"=Y.x . "
"]l t 2t subject to Yy = Py p X
- Yu,(l —a,)r, =0
Additionally, the rewards must be non- ( 2
. Yu,r, > 0
negative, sum to at most budget R, and can
Irll; <R

only be placed at Avicaching locations given
by a, where a, = 1 if u is an Avicaching loca-
tion, and 0 otherwise.

Scaling Avicaching using Machine Learning

A previous study folded the identification problem as linear constraints into the
pricing problem by defining g (in expression for p, ) as a linear transformation.
The pricing problem was then solved using a Mixed-Integer Programming (MIP)
solver, which scaled poorly as the number of locations in the game increased.

We generalize the formulation by using a deep neural network for g, and scale both
problems efficiently by harnessing Graphical Processing Units (GPUs).
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Neural Network Architecture

We build the input as follows: F|v] is a n X m matrix such that F[v][u] =
| fu> duv» 1], @ vector of m features that could influence agents to shift from v to u.
This input F|v] is then fed forward into the network, which repeatedly takes linear
combinations and applies non-linear functions to obtain P|v], as shown below.
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Figure 4. A 3-layer neural network for the identification problem. s is the softmax function, and g;
are non-linear “activation” functions. ne, is a regularizer (e,[u] = 1 if v = u and 0 otherwise) that
controls how much P|v] looks like e,

The neural network model is essentially a sequence of batch-matrix operations
that can be parallelized on GPUs. We can learn w* and r* using gradient descent
updates on the same backpropagation framework. As shown below, the learned
w” from the identification problem become inputs to the pricing problem, which
tunes the rewards r to minimize the pricing problem objective.
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Figure 5. Tensor representations of the identification (left) and the pricing (right) models. Dark
blue tensors are static and red are optimizable. On the top-left are directions of dimensions.

Results

We compare our GPU-run models’ performance and speed with those from previ-
ous studies (n = 116 locations, m = 35 total features, T = 182 time periods).

Loss Runtime (s) 2-layer 6-layer
Random 1.014 — Learned| 1.073 1.025
Random Forest 0.491 26.4 MIP 1.110 —
BFGS 0.374 507.3 Random| 1.169 1.303
2-layer 0.366 48.0
6-layer 0.358 647 8 Table 2. Pricing problem. Comparing the

normalized objective, %@ (lower the better),

on different reward allocation schemes, we see
that 2- and 6-layer networks better optimize the
objective than the MIP formulation. The MIP
models (lower the better). Compared to the formulation takes > 36,000 seconds to rumn, while
state-of-the-art BFGS-based model, our the GPU-run 6-layer network completes 10,000

networks perform better while taking less time. iterations in 44.45 seconds.

Table 1. Identification problem. We split the
dataset along t as 75-5-20 train-valid-test sets
and report the test loss values for different

In both problems, we perform better than the previous state of the art while taking
less time; our models are more than 800x faster than MIP in the pricing problem.
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