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ABSTRACT
Citizen science programs have been instrumental in boosting sus-
tainability projects, large-scale scientific discovery, and crowd-
sourced experimentation. Nevertheless, these programs witness
challenges in submissions’ quality, such as sampling bias resulting
from citizens’ preferences to complete some tasks over others. The
sampling bias frequently manifests itself in the program’s dataset
as spatially clustered submissions, which reduce the efficacy of
the dataset for subsequent scientific studies. To address the spatial
clustering problem, programs use reward schemes obtained from
game-theoretical models to incentivize citizens to perform tasks
that are more meaningful from a scientific point of view. Herein
we propose a GPU-accelerated approach for the Avicaching game,
which was recently introduced by the eBird citizen science program
to incentivize birdwatchers to collect bird data from under-sampled
locations. Avicaching is a Principal-Agent game, in which the prin-
cipal corresponds to the citizen science program (eBird) and the
agents to the birdwatchers or citizen scientists. Previous approaches
for solving the Avicaching game used approximations based on
mixed-integer programming and knapsack algorithms combined
with learning algorithms, using standard CPU hardware. Following
the recent advances in scalable deep learning and parallel compu-
tation on Graphical Processing Units (GPUs), we propose a novel
approach to solve the Avicaching game, which takes advantage of
neural networks and parallelism for large-scale games. We demon-
strate that our approach better captures agents’ behavior, which
allows better learning and more effective incentive distribution in
a real-world bird observation dataset. Our approach also allows
for massive speedups using GPUs. As Avicaching is representative
of games that are aimed at reducing spatial clustering in citizen
science programs, our scalable reformulation for Avicaching en-
ables citizen science programs to tackle sampling bias and improve
submission quality on a large scale.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Applied
computing → Decision analysis.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
COMPASS ’19, July 3–5, 2019, Accra, Ghana
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6714-1/19/07.
https://doi.org/10.1145/3314344.3332495

KEYWORDS
Citizen Science, Computational Sustainability, Machine Learning,
Mixed-Integer Programming, Parallel Computation

ACM Reference Format:
Anmol Kabra, Yexiang Xue, and Carla P. Gomes. 2019. GPU-accelerated
Principal-Agent Game for Scalable Citizen Science. In ACM SIGCAS Con-
ference on Computing and Sustainable Societies (COMPASS) (COMPASS ’19),
July 3–5, 2019, Accra, Ghana. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3314344.3332495

1 INTRODUCTION
In the past decade, citizen science programs, such as eBird [16,
29], Zooniverse [19], and CoralWatch [20], have been successful
in engaging the general public in collecting meaningful data to
answer research questions. These programs allow researchers to not
only outsource data collection and observation tasks to the public,
but also educate the public about scientific methodologies and
concepts [9]. Moreover, the extensive observational data collected in
these programs enable researchers to expedite scientific discovery,
support environmental conservation, and inform policy decisions
on science and sustainability [10, 14, 21].

Although citizens assist in scientific discovery through large-
scale data collection, they collect data according to their own moti-
vations, rather than providing systematic observations that satisfy
scientific requirements, which the researchers desire [1, 3, 5, 6, 21].
Citizens’ motivations are influenced by various “task”-dependent
factors, where a “task” can refer to one in many experiments in the
program that citizens could complete, or one in many geographical
sites that citizens may collect data at. The influence of these fac-
tors, which may include tasks’ relative appeal compared to other
tasks and citizens’ personal preferences, introduces sampling bias
in the datasets [3]. The bias often manifests itself in the form of
undesirable spatio-temporal clustering of submitted observations,
hurting the efficacy of dataset-based scientific models and subse-
quent environmental conservation efforts [12, 30].

This misalignment in the researchers’ (principal’s) and citizens’
(agents’) motivations also occurs in settings other than citizen sci-
ence, such as game-theoretical economics [18], political science [11],
and crowdsourcing [27]. Previous studies have compensated for the
misalignment in these settings using Principal-agent games [8, 26]
(also known as Stackelberg games [23]). In these games, the princi-
pal learns incentives, which could motivate agents to complete the
most crucial tasks, by factoring in the agents’ reasoning process.

As Tiago et al. conclude from their study on spatial bias in differ-
ent citizen science programs, the programs must either passively
compensate for the sampling bias (after data collection) or actively
reduce sampling bias (during data collection) [30]. Principal-agent
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Figure 1: Spatial clustering in eBird submissions before 2014
in mainland USA (left) and Midwest USA (right) [31]. While
population centers account for a large number of submis-
sions (yellow points), other locations are under-sampled.

games are one of the most promising mechanisms using which
citizen science programs can proactively reduce spatio-temporal
clustering [6, 16, 31]. In addition to accurately modeling the princi-
pal and agent’s motivations, solutions to these games must also be
efficient and scalable to demonstrate their feasibility in large-scale
citizen science programs.

For example, consider eBird—a bird observation dataset collected
by citizen scientists and used for studying seasonal bird migration
and changes in habitats [16, 29]. To combat spatial clustering of
citizens’ visits to birdwatching locations (Figure 1), eBird recently
introduced the Avicaching game to reward citizen scientists for
visiting previously under-sampled locations. By motivating citizens
with rewards1 to perform the most crucial tasks, eBird organizers
witnessed a promising reduction in spatial clustering: ≈ 20% of bird-
watching effort shifted from popular to under-sampled locations
during a 3-month pilot study in upstate New York, USA [31]. For al-
locating rewards in Avicaching, Xue et al. folded the agents’ reason-
ing process (termed “identification problem”) as linear constraints
into the reward allocation scheme (“pricing problem”), which they
solved using an off-the-shelf Mixed-Integer Programming (MIP)
solver [32]. However, this MIP formulation scales poorly as the num-
ber of locations in the game increases, hampering the technique’s
use in large citizen science programs.

In this study, we propose a novel reformulation of the problem
to solve large-scale games in citizen science using parallelizable
machine learning architectures on GPUs, thus improving scalability
and computational costs in these games. Our work thus enables
citizen science programs to actively reduce spatial clustering, thus
reducing sampling bias in large datasets and improving the efficacy
of subsequent scientific modeling.

Our work is motivated by the recent uptick in Deep Learning’s
scalability and performance for optimization [25], and by principal-
agent games’ application in reducing sampling bias in citizen sci-
ence. In addition to building a neural-network-based reformulation
of these games to better learn agents’ behavior and incentive distri-
bution, we demonstrate how this reformulation yields to parallel
computation on Graphical Processing Units (GPUs), which help us
dramatically scale both the identification and pricing problems in
Avicaching. Our reformulation for Avicaching also applies to games
in other citizen science programs, since Avicaching is representative
1The Avicaching rewards contributed to a citizen’s position on a public leaderboard,
which determined the type of award or gift the citizen received.

of principal-agent games in citizen science [32]. In particular, our
contributions are threefold:

(1) We reformulate the canonical Avicaching principal-agent
game, previously studied with MIP, with deep neural net-
works. We develop a novel scheme to learn agents’ behavior
and allocate rewards on the same neural network architec-
ture, allowing us to solve the identification and pricing prob-
lems under the same framework.

(2) Our proposed principal-agent games’ reformulation is scal-
able and practical for large-scale deployment, as we imple-
ment our framework using parallelizable tensor operations,
enabling deep networks to efficiently train on GPUs.

(3) Finally, we evaluate our solvers on eBird, a real-life dataset
in citizen science, and find that our framework performs
slightly better on accuracy metrics while running several
orders of magnitude faster than previous solvers.

Our neural-network-based techniques thus enable citizen sci-
ence organizers to efficiently limit sampling bias in large datasets,
ultimately aiding citizen-science-based scientific discovery.

The code is available at github.com/anmolkabra/avicaching.

2 REDUCING SPATIAL CLUSTERING
In this section we introduce the Avicaching game and review Xue
et al.’s formulation of the game [31, 32]. We extend Xue et al.’s
two-stage principal-agent game’s formualation [32] in this study
as they demonstrate its efficacy over models that used dynamic
programming and knapsack-based approaches [31].

To effectively steer agents towards crucial tasks, the principal
must factor in the agents’ preferences when allocating rewards. This
two-stage process is effectively captured with a bilevel optimization
problem [7]. In such problems, the lower-level optimization problem
of learning the agents’ behavior, with respect to their intrinsic
preferences and the principal’s rewards, is embedded in the upper-
level problem of distributing rewards to maximize the principal’s
utility, as summarized in Equation (1).

(Principal) r∗ = argmax
r

Up (v
∗, r )

subject to Bp (r )

(Agents) v∗ = argmax
v

Ua (v, r )

subject to Ba (v )

(1)

In this model, the principal wishes to maximize its utilityUp by
introducing rewards r , subject to the reward constraints Bp and the
agents’ behavior v∗, which is the result of the sub-problem: agents’
maximizing their utilityUa .

As devised in Avicaching for eBird, the principal can reward
agents to visit under-sampled locations to increase the spatial ho-
mogeneity in visits, i.e., reduce spatial clustering. Algorithm 1 de-
scribes eBird organizers’ strategy to achieve spatial homogeneity.

2.1 Identification Problem: Learning Agents’
Behavior

We can extract the number of visits to a location u from the eBird
dataset before and after a reward rt,u was applied during a time
period t . Let the visit densities over n locations prior to the reward
treatment be xt and after the reward treatment be yt.

https://github.com/anmolkabra/avicaching
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Algorithm1 eBird organizers’ strategy to optimize their utility [32]
in Equation (1)
1: Deploy rewards and observe agents’ behavior
2: while homogeneity not achieved do
3: Understand agents’ behavior via visit patterns

(identification problem)
4: Deploy new, learned rewards (pricing problem) and ob-

serve agents’ behavior

Using Xue et al.’s formulation, learning how the agents’ visits
changed during period t is equivalent to learning a mapping P :
xt 7→ yt [32]. While P can be any mapping, we use Xue et al.’s
assumption [32] that P is a matrix such that Pxt ≈ yt so as to use
their models as our benchmarks. P is itself a function of location-
specific features—rewards rt, pairwise distances of locations D, and
environmental features f like proximity to wetlands, brackish water
bodies etc.—all weighted with learnable parameters w.

Intuitively, the entry pu,v in matrix P is the probability of the
agents’ effort shifting from location v to u. This probability can
be calculated from the environmental features fu of location u, the
reward rt,u , and the distance of location u from v , all appropriately
weighed by a functionдwith parametersw. Xue et al. [32] formulate
pu,v as the following, whichwe reinterpret as a softmax function [4]
applied on probabilities pu,v with v fixed.

pu,v =
exp(д(fu,du,v , rt,u ;w) + η · δuv )∑

u′ exp(д(fu′ ,du′,v , rt,u′ ;w) + η · δu′v )

= softmaxv (д + ηev )[u]
(2)

In Equation (2), δi j is the Kronecker delta function (1 if i = j

and 0 otherwise), ev is the vth standard basis vector in Rn , and the
hyperparameter η tunes P to look like the identity matrix when
д = 0, i.e., when the features are uninformative and yt = xt.

Now, given a dataset D = {(xt, yt, rt)t , f ,D}, the identification
problem corresponds to learning w∗ such that Pxt ≈ yt, as in
the following equation [32]. We add an L2 regularizer to reduce
overfitting during training.

w∗ = argmin
w

∑
t

ωt (yt − Pf,D,rt;wxt)

2
2 + λ ∥w∥

2
2 (3)

Here, ωt is the count of visits in period t , i.e., ωt = yt1, meant
to weigh periods with greater number of visits higher. We also
emphasize using subscripts that the entries of P depend on f ,D, rt,
and are parameterized by w. We now normalize xt, yt such that
∀t , ∥xt∥1 = yt1 = 1.

2.2 Pricing Problem: Distributing Rewards
Since the eBird organizers aim to reduce spatial clustering, the pric-
ing problem finds rewards that minimize variance in predicted visit
densities y = Pxwhere P is evaluated atw∗ and x = ∑t xt/ ∑t xt1.
For our objective function, we use the 1-norm variance, y − y1,
rather than the 2-norm version, so as to compare our models’ perfor-
mance directly with that of Xue et al.’s MIP-based models [32]. Here,
y = mean(yu ). Additionally, the rewards must be non-negative,
sum to at most budget R, and can only be placed at Avicaching

locations given by a binary vector a (rewards at ‘non-Avicaching
locations’ must be 0). Since au = 1 if u is an Avicaching location
and 0 otherwise, the last constraint is ∀u, (1 − au )ru = 0. This
optimization problem can be written as Equation (4).

r∗ = argmin
r

1
n
y − y1

subject to y = Pf,D,w∗;rx

∀u, (1 − au )ru = 0
∀u, ru ≥ 0
∥r∥1 ≤ R

(4)

2.3 Generalizing to Citizen Science Programs
This formulation of principal-agent games generalizes to other citi-
zen science programs as well. In a program with n tasks where the
principal has reward data rt, tasks’ characteristics f , and agents’
submission data xt, yt, the principal can learn the parameters w
in the linear mapping P with pu,v defined analogously. The pric-
ing problem’s formulation also generalizes as the constraints on
rewards frequently appear in general incentive-based motivation
schemes: avoid penalizing agents with negative rewards, distribute
rewards up to a budget, and be selective of which tasks to reward.

3 SCALABLE PRINCIPAL-AGENT GAMES
USING MACHINE LEARNING

Since the previous models for these games do not scale well with
increasing number of tasks, we use machine learning and parallel
computation to give us approximate models suitable for large-scale
games. For instance, the MIP formulation for Avicaching is not
practical on large-scale games because the MIP takes ≈ 10, 000
seconds for placing rewards on ≈ 30 locations with 33 features per
location in eBird [32], which has millions of locations. By relaxing
the integer constraints on rewards, we are able to develop a novel
learning scheme to solve both the identification and pricing problem
using the same neural network architecture, which can be efficiently
scaled with batch-matrix operations on GPUs. This model thus
improves the feasibility of principal-agent games to tackle spatial
clustering in large citizen science programs.

3.1 Learning w∗ and r∗

3.1.1 Neural Network Architecture. For calculating pu,v in Equa-
tion (2), while Xue et al. choose д to be a linear combination of
features [fu,du,v , rt,u ] [32], we generalize д to be potentially non-
linear. In this study, we use a sequence of linear combinations and
activation functions for д, defined as the following:

д(fu,du,v , rt,u ) = wj−1 · aj−1 (wj−2 · . . . · a1 (w1 · [fu,du,v , rt,u ]))

where ai are activation functions used in neural networks [4], and
wi are weights. This sequence of 2(j − 1) operations can also be
thought of as j − 1 layers in a neural network2, followed by the
softmax layer to getpu,v , making a total of j layers.With this formu-
lation, a 2-layer network will have an input layer,w1, and a softmax
layer but no activation functions. A 3-layer network will have w2

2In the context of our neural-network-based models, objective functions of both
problems are loss functions, and w is the set of all wi .
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and an activation function in addition to the 2-layer network’s
units; the compositions of deeper networks follow similarly.

We build the input as follows: for locationv , F[v] is an×mmatrix
such that F[v][u] is [fu,du,v , rt,u ], a vector ofm features that could
influence agents to move from location v to u (Algorithm 2). This
makes F a n × n ×m-size tensor.

Algorithm 2 Building F

1: function Build-Dataset(f ,D, rt)
2: for v = 1 : n do
3: for u = 1 : n do
4: F[v][u]← [f[u],D[v][u], rt[u]]
5: return F

The network now feeds features in F[v] forward, as pictured in
Figure 2a and defined in Algorithm 3, to obtain P[v], a probability
vector of agents moving from v to other locations. Given this es-
timate of P, the network calculates the loss value and updates the
parameters wi using the backpropagation algorithm. As illustrated
in Figure 2b, our network thus essentially becomes a sequence of
batch-matrix operations that can be parallelized on GPUs [2, 25, 28].
To stabilize training of deeper networks, we batch-normalize ten-
sors, obtained after applying activation functions ai , by subtracting
the tensor’s mean and dividing by its standard deviation [15].

Algorithm 3 A forward pass in a 3-layer network
1: function Forward(f ,D, rt,w1,w2, xt)
2: F← Build-Dataset(f ,D, rt)
3: H← ReLU(Batch-Multiply(F,w1))
4: PT ← softmax(Batch-Multiply(H,w2))
5: return Pxt

The learned weights w∗i from the identification problem become
inputs to the pricing problem network, which tunes the rewards r
to minimize the objective (Equation (4)). After initializing r in the
feasible region given by the constraints, the network repeatedly
feeds r forward in the same network, calculates loss for the pricing
problem, and updates r using gradient updates (see Figure 2c).

3.1.2 Enforcing Constraints on Rewards. Since gradient updates to
r in the pricing problem will potentially violate the constraints in
the pricing problem, we explicitly enforce constraints after updat-
ing rewards. In the Avicaching game, non-negativity and budget
constraints are easy and fast to enforce—to efficiently project the
updated r to the feasible space, we clip rewards at minimum 0, and
re-normalize to satisfy ∥r∥1 = R.

Furthermore, backpropagation-based gradient updates enable us
to reset rewards at non-Avicaching locations to 0 efficiently: since
r is updated by gradient steps, we can initialize rewards at such
locations to 0 and explicitly set the gradients of these rewards to 0
at each update step. This is possible only since ∇ru loss, calculated
using chain rule, is independent of ∇rv loss if u , v . Consequently,
rewards at non-Avicaching locations remain 0 during training.

Therefore, we can learn w∗ and r∗ using gradient descent up-
dates on the same backpropagation framework and neural network
architecture. Algorithm 4 describes the full learning pipeline, high-
lighting the two-stage process.

Algorithm 4 The complete 3-layer-network-based model
▷ f ∈ Rn×m ;D ∈ Rn×n ;∀t , xt, yt, rt ∈ Rn

1: ∀ tasks’ characteristic i , f[:, i]← Normalize(f[:, i])
2: D← Normalize(D)
3: w1 ← Random( (n,m,m) ) ▷ Identification Problem
4: w2 ← Random( (n,m, 1) )
5: for epoch = 1, 2, . . . do
6: loss ← 0
7: for t = 1, 2, . . . do
8: ŷt ← Forward(f ,D, rt,w1,w1, xt)
9: loss← loss + (ω[t](yt − ŷt))2

10: Gradient-Descent(loss,w1,w2)
11: w1,w2 ← Update-Using-Gradients(w1,w2)

12: x← Normalize(∑t xt) ▷ Pricing Problem
13: r← Random( (n) )
14: r← Apply-Constraints(r)
15: y← Forward(f ,D, rt,w1,w1, x)
16: loss← y − y1 /n
17: for epoch = 1, 2, . . . do
18: Gradient-Descent(loss, r)
19: r← Update-Using-Gradients(r)
20: r← Apply-Constraints(r)
21: y← Forward(f ,D, rt,w1,w1, x)
22: loss← y − y1 /n

3.1.3 Optimizations in Implementation. Here, we discuss a cou-
ple of optimizations in implementations of the sub-problems that
further reduce the computational cost of our methodology.

Firstly, in the identification problem, since the environmental
features f and pairwise-distances D, which are used to build the
dataset F in every Forward pass in Algorithm 3, do not change,
we can avoid the redundant concatenation of f[u] and D[v][u]
in Build-Dataset. We perform this concatenation once before
training the identification problem model and simply place the rt
vector as the last slice of F in every Forward pass for time period
t .

Secondly, in the pricing problem, since the entries of w∗1 that
affect the gradient update rule for r don’t undergo arithmetic op-
erations with other entries of w∗1 or other features in F due to the
backpropagation framework, we can splitw∗1 in the pricing problem
into those that interact with r and those that don’t. This splitting
reduces redundant computation, as described below.

The batch-multiplication of F and w∗1 is essentially the product
of F[v] ∈ Rn×m andw∗1[v] ∈ R

m×m for allv , as shown in Figure 2c.
Each of these products can be split as the following:

F[v][:, :m] ×w∗1[v][:m, :] + F[v][:,m] ×w∗1[v][m, :]

where the first product (involving ‘Rest of F’ and corresponding
entries of w∗1) remains constant, and the second product (involving
r and corresponding entries of w∗1) gets updated during optimiza-
tion. We precompute F[v][:, :m] ×w∗1[v][:m, :] for all v , compute
the second product at each iteration, and simply add them to get
F × w∗1. Therefore, we are able to perform a tensor addition and
matrix multiplication instead of a tensor multiplication at each
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(a) A network representation of the identification problem model. The network feedsm features per task-pair (u, v ) forward in the network,
in a sequence of linear combinations and activations. The regularizer ηev is then added (ev [u] = 1 if u = v else 0). After applying softmax,
the network outputs P[v] as in Equation (2).
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(b) A tensor representation of Figure 2a. For each t , we place the rewards rt on the dotted slice of F, feed horizontal batches of matrices F[v]
and obtain PT in one pass. This also illustrates how a neural network is a sequence of matrix multiplications, additions, and element-wise
function applications. Input n × n ×m-size F is multiplied by n ×m ×m-size weights w1 to get a n × n ×m-size tensor, on which activation
function a1 is applied. We then multiply n ×m × 1-size w2, add ηI , and row-wise apply softmax to get PT . The red tensors are then iteratively
updated with backpropagation.
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(c) Solving the pricing problem. After learning w∗i in the identification problem, the rewards in F are optimized. Now, only the tasks’ rewards
(last vertical slice in F) are optimizable. The rewards and their corresponding w∗1 weights are marked with dots.

Figure 2: 3-layer architecture for principal-agent games. Deeper networks simply add n ×m ×m-size wi and ai after applying
a1 and before multiplying with the ultimate n ×m × 1-size weights. Static tensors are colored dark blue, optimizable tensors
red, intermediate resultant tensors green, and activation functions ai , applied to tensors resulting from a multiplication with
wi, yellow. s (·) is the softmax function. Directions of dimensions are marked on the top-left.
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feed-forward step, thus reducing the computational cost of training
the pricing problem model.

4 EXPERIMENTS
In this section, we compare the empirical performance of our neural-
network-based models to Xue et al.’s models [32] with the objec-
tive functions of identification (Equation (3)) and pricing problem
(Equation (4)) as performance metrics. We also compare our models’
scalability to that of MIP-based model [32], and discuss differences
between CPU-run and GPU-run versions of our models.

We use recorded agents’ visit densities from eBird, which were
also used by Xue et al [32]. This visit density datasetD has n = 116
locations, T = 182 time periods, and 33 environmental features.

For the identification problem, we split the dataset 75-5-20 in
train-validation-test sets in random order of time periods as the
ordering of time periods in D is not known [13]. After training
all neural networks for 1000 epochs with the Adam algorithm for
gradient descent [17], we use the loss function’s value on the vali-
dation set to find hyperparameters λ and η. Thereafter, we split D
into 80-20 train-test sets, train with these regularization hyperpa-
rameters for 1000 epochs, and report the test loss, averaged over
three random initializations of w.

For each of the three sets of optimized w∗, we optimize pric-
ing problem models using the Adam algorithm with three random
reward initializations adding to R. When each of these models is
run for 10000 epochs, we record the set of rewards that minimizes
the objective function. We set R = 365 as the rewards that were
found by the MIP solution in Xue et al.’s work [32] satisfy this con-
straint. We use Rectified Linear Units (ReLUs) [22] for all activation
functions ai .

To demonstrate our identification problemmodels’ scalability, we
run them on random datasets of increasing number of locationsn on
both GPU and CPU for 50 epochs. We then run the pricing problem
models’ for 500 epochs similarly. Since our GPU has limited RAM,
networks of different depths can train on datasets of different sizes,
adjusted by locations n. For both problems, we find the maximum
n that a k-layered model can be run on our GPU, and run that
model on datasets with n in increments of 30, starting from 0 up
to the maximum n. Although this results in different k-layered
models getting tested for execution time on different sets of n, the
scalability trends remain comparable. Since computational cost per
epoch does not vary, the scalability trends for our models for both
problems should behave similarly when models are executed for
1000 and 10000 epochs respectively.

We run all our experiments on a Dell Precision Tower 3620 PC
with Intel Core i7-7700K (8 cores) with 16GB RAM and Nvidia
Quadro P4000 GPU with 8GB RAM, and build our neural networks
with CUDA 8.0, cuDNN 5.1.10, PyTorch 0.4.0 [24], NumPy 1.14.5,
and MKL 2018.0.3 in Ubuntu 16.04 LTS. We use CPLEX Optimiza-
tion Studio 12.8 with its Python API to run the MIP benchmark
model [32]. The CPLEX solver uses all 8 cores of the CPU.

4.1 Experiments for the Identification Problem
We find that η = 10 and λ = 1 consistently result in low validation
loss on anyk-layeredmodel.We then train 2-, 4-, and 6-layer models
with learning rate 10−3 on the 80-20 dataset splits, and run Xue

et al.’s BFGS-based 2-layer, Structural SVM, and Random Forest
models [32] on the same splits.

Table 1 shows the decrease in test loss as the number of layers
in the networks increases, and Figure 3 illustrates the computation
speedup on GPUs vs CPUs.

We observe that the 6-layer network optimizes the loss function
more than the 2-layer network. However, there is a trade-off be-
tween the number of locations a model can optimize for (at once)
and the model’s capability at optimizing the loss function, specifi-
cally due to memory limits and computation costs.

Loss Runtime (sec)
Random 1.014 —
Historical 0.554 —
Random Forest 0.491 26.4
SVM 0.978 0.1
BFGS 0.374 507.3
2-layer 0.366 48.0
4-layer 0.368 339.5
6-layer 0.358 647.8

Table 1: Comparing average runtimes and test loss, i.e.,∑
t ∥ωt (yt−ŷt )∥

2
2∑

t ∥ωt (yt−y)∥
2
2

(lower the better) for predictions ŷt, where

y = mean(yt,u ). The first two are baselines: random ŷt
and ŷt ← xt, i.e., using historical data as predictions. The
next three [32] are CPU-run models, and the last three are
our GPU-run neural networks. The last four models pre-
dict ŷt = Pxt by directly learning entries of P. We see that
our 6-layer model performs ≈ 1.5% better than the state-of-
the-art BFGS-based model, while the 2-layer model delivers
≈ 0.5% lower loss than the BFGSmodel in one-tenth the time.
Moreover, we don’t observe overfitting in deeper networks
even as the training set remains constant, possibly due to
batch-normalization and weight regularization that prevent
deeper networks from overfitting during training.

4.2 Experiments for the Pricing Problem
We compare the different reward distributions’ efficacy using the
pricing problem’s objective, and choose the following distributions
as baseline metrics: zero, equal, random, and MIP-learned rewards.

We evaluate the zero/equal/random sets of rewards in the fol-
lowing way: using the weights learned by a k-layer model in the
identification problem, we plug each reward set into the model and
determine the value of the objective function. This process captures
the efficacy of these rewards on reducing the predicted visit den-
sities based on the behavior models learned in the identification
problem. For each set of rewards, we report the objective value
averaged over the three sets of weights that were generated for
each k-layer model. For example, we feed zero rewards into each
of the three sets of w∗ obtained for 2-layer models, and report the
average of the objective values.

Now we explain our setup for the MIP-learned benchmark re-
wards. We add the budget constraint ∥r∥1 ≤ R to Xue et al.’s MIP
formulation [32] since the formulation didn’t have one. Addition-
ally, since the formulation required each reward value to be drawn
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Figure 3: Demonstrating GPU vs CPU scalability in deep networks for identification problem as n increases. Executed for 50
epochs, all models scale better on GPUs, displaying the speedup with GPUs for large-scale games. For the 6-layer network,
the GPU speedup is dramatic: upto ≈ 7 times with n = 120; the GPU-speedup only increases with deeper networks as parallel
computation allows networks to scale. Due to memory restrictions, we could only run 6-layer models for n ≤ 120 locations on
our GPU with 8GB RAM, 4-layer models for n ≤ 160, and 2-layer models for n ≤ 500.

from a set of integers R = {R1,R2, . . . ,Rk }, we choose this set to
be R = {0, 1, 2, . . . ,Rmax }. Here, we set Rmax to be a large enough
integer based on the total budget R, say ⌊R/4⌋ (365 / 4 = 91 in our
experiments). This is a heuristic based on the reward values we
see in Xue et al.’s study and those that our neural networks learn.
The MIP then uses the learned weights from our 2-layer network
to optimize the objective y − y1 in a time limit of 10 hours. We
report the objective value averaged over the three sets of weights
for the 2-layer model from the identification problem.

Table 2 compares the efficacy of different sets of rewards, Figure 4
illustrates the GPU vs CPU scalability trends, and Table 3 compares
the neural network models’ runtimes for calculating rewards with
the MIP’s runtime.

2-layer 4-layer 6-layer
Learned 1.073 1.236 1.025
MIP 1.110 – –
Zero 1.168 1.505 1.302
Equal 1.169 1.506 1.302
Random 1.169 1.506 1.303

Table 2: Comparing the normalized objective, 1
n
∥y−y∥1

y
(lower the better) produced by different sets of rewards,
where y = mean(yu ). We observe that the 6-layer model re-
sults in the lowest score compared to 2- and 4-layer models,
and our network-learned rewards consistently outperform
baseline distributions. The MIP’s rewards are not globally
optimal as the solver exceeded the time limit of 10 hours in
every run; however, the solver was able to find a few integer
solutions. This, and the integer constraints on rewards in the
MIP, explain why the MIP rewards result in a worse score
compared to the 2-layer network optimized using gradient-
descent. Since the 2- and 6-layermodels did not dramatically
differ in performance in the identification problem (Table 1,
we contend that the learned rewards by the 6-layer network
slightly outperform theMIP’s rewards. Since the deeper net-
works have non-linear activation functions, we could not
embed them into the MIP.

2-layer 4-layer 6-layer MIP
Runtime (sec) 9.65 26.80 44.45 ≥ 36, 000

Table 3: Comparing runtimes of pricing problemmodels, all
run on original eBird data with 116 locations. Since theMIPs
exceeded the 10-hour time limit, there runtimes are at least
10 hours. Whereas the MIPs take ≥ 36, 000 seconds to ter-
minate, our GPU-run networks finish 10000 epochs in ≤ 50
seconds. The 6-layer model thus runs ≥ 800x faster than the
MIP model, demonstrating that our models provide several
orders of magnitude speedup.

As noted in Table 2, the MIP could not find optimal rewards in
the time limit of 10 hours, which may be a reason why rewards
learned by our networks outperform MIP rewards. On a subset
of the eBird dataset with only n = 10 locations, we repeated the
pricing problem experiments for 2-layer networks to test if the
optimal MIP strategy performs worse than the neural-network-
based approach even on a very small dataset. After calculating 3 sets
of w∗ from the identification problem, the neural-network-based
approach achieved 0.946 on the metric, averaged over 3 random
initializations of rewards and different sets of w∗. The MIP solver
convincingly outperformed after running to completion in ≈ 1
minute, scoring 0.573 on the metric, averaged over different w∗.
Therefore, although our neural-network-based approach cannot
match the MIP’s performance when the dataset is small, our models
are competitive in performance when the dataset grows in size.
This behavior highlights the importance of scalability in obtaining
influential rewards for the Avicaching game, as the speedup of our
approach aids the performance to slightly outperform the previous
optimal MIP approach.

5 CONCLUSION
In this study, we tackle spatial clustering in large-scale citizen
science programs with a machine-learning-based formulation of
principal-agent games. We build scalable architectures for Avi-
caching, and use the same architecture to solve both the identifica-
tion and pricing problems using backpropagation for optimization.
Our formulation puts parallelization on the center stage to solve
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Figure 4: Demonstrating GPU vs CPU scalability in deep networks for pricing problem as n increases. Run for 500 epochs each,
we see that computation cost is not a limiting factor in the pricing problem. This is because there are only n parameters in the
neural network model, namely the rewards, making backpropagation cheaper than in the identification problem. While GPU
runs are costlier for small datasets (n ≤ 480 for 2-, n ≤ 60 for 4-, and n ≤ 40 for 6-layer model) as CPU-GPU memory transfer
overhead dominates, GPU and CPU runs follow a similar trend vs n as in the identification problem.

large-scale games, and we demonstrate our models’ viability com-
pared to the previous state of the art, which used MIP. We evaluate
our models on real-life bird observational data from eBird, and
demonstrate that our models capture agents’ behavior and incen-
tive distribution more effectively than previous studies. Moreover,
the structure of our models allows us to tap parallel computation
to speed up runtime by several orders of magnitude.

With scalable models to learn citizens’ behavior and incentives
that motivate citizens to complete unappealing tasks, citizen science
programs can reduce sampling bias on an unprecedented scale, and
improve the datasets’ use in rapid scientific discovery and modeling.

As for the future work, it will be interesting to implement our
techniques for other citizen science programs with esoteric con-
straints on reward allocation. While the Avicaching game is rep-
resentative of the general game in most programs, games with
unconventional constraints will challenge our methods. There is
also immense potential in considering memory-efficient models to
enable deeper networks, and larger networks in terms of the num-
ber of locations. Confronting the memory-performance trade-off in
the identification problem is a compelling research project. We also
see merit in end-to-end principal-agent game solvers, which do not
take the two-stage strategy we propose. End-to-end solvers will be
easier and more practical to deploy, and might circumvent ad-hoc
hyperparameter optimization. Future research may also further
compare the neural networks with mixed-integer programming.
Our study benefits from relaxing the integer constraints on rewards
that Xue et al. enforced [31, 32], and studies on these types of re-
laxations may lead to interesting juxtapositions between the two
optimization frameworks.

6 ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers for their suggested
clarifications, and comments that helped us improve our experi-
ments. We also thank the thousands of eBird participants, and the
Cornell Lab of Ornithology for managing eBird and deploying Avi-
caching. This research study was supported by the National Science
Foundation (NSF) awards CCF-1522054 and CNS-0832782 (Expe-
ditions), and the computing infrastructure was supported by the
Army Research Office (ARO) grant W911NF-17-1-0187 (DURIP).

REFERENCES
[1] Abdulmonem Alabri and Jane Hunter. 2010. Enhancing the Quality and Trust

of Citizen Science Data. In 2010 IEEE Sixth International Conference on e-Science.
81–88. https://doi.org/10.1109/eScience.2010.33

[2] Ron Bekkerman, Mikhail Bilenko, and John Langford. 2011. Scaling Up Machine
Learning: Parallel and Distributed Approaches. Cambridge University Press, New
York, NY, USA.

[3] Tomas J. Bird, Amanda E. Bates, Jonathan S. Lefcheck, Nicole A. Hill, Russell J.
Thomson, Graham J. Edgar, Rick D. Stuart-Smith, Simon Wotherspoon, Martin
Krkosek, Jemina F. Stuart-Smith, Gretta T. Pecl, Neville Barrett, and Stewart
Frusher. 2014. Statistical solutions for error and bias in global citizen science
datasets. Biological Conservation 173 (2014), 144 – 154. https://doi.org/10.1016/j.
biocon.2013.07.037

[4] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

[5] Rick Bonney, Caren B. Cooper, Janis Dickinson, Steve Kelling, Tina Phillips,
Kenneth V. Rosenberg, and Jennifer Shirk. 2009. Citizen Science: A Developing
Tool for Expanding Science Knowledge and Scientific Literacy. BioScience 59, 11
(2009), 977–984. https://doi.org/10.1525/bio.2009.59.11.9

[6] Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, and Milind
Tambe. 2014. STREETS: Game-theoretic Traffic Patrolling with Exploration and
Exploitation. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI’14). AAAI Press, 2966–2971. http://dl.acm.org/citation.cfm?
id=2892753.2892962

[7] Benoît Colson, Patrice Marcotte, and Gilles Savard. 2007. An overview of bilevel
optimization. Annals of Operations Research 153, 1 (01 Sep 2007), 235–256. https:
//doi.org/10.1007/s10479-007-0176-2

[8] Vincent Conitzer and Nikesh Garera. 2006. Learning Algorithms for Online
Principal-agent Problems (and Selling Goods Online). In Proceedings of the 23rd
International Conference on Machine Learning (ICML ’06). ACM, New York, NY,
USA, 209–216. https://doi.org/10.1145/1143844.1143871

[9] Angela J. Dean, Emma K. Church, Jenn Loder, Kelly S. Fielding, and Kerrie A.
Wilson. 2018. How do marine and coastal citizen science experiences foster
environmental engagement? Journal of Environmental Management 213 (2018),
409 – 416. https://doi.org/10.1016/j.jenvman.2018.02.080

[10] Daniel Fink, Theodoros Damoulas, and Jaimin Dave. 2013. Adaptive Spatio-
Temporal Exploratory Models: Hemisphere-wide species distributions from mas-
sively crowdsourced eBird data. https://www.aaai.org/ocs/index.php/AAAI/
AAAI13/paper/view/6417/6852

[11] Sean Gailmard, Mark Bovens, Robert E. Goodin, and Thomas Schille-
mans. 2014. Accountability and Principal-Agent Theory. http:
//www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199641253.001.
0001/oxfordhb-9780199641253-e-016

[12] Jonas Geldmann, Jacob Heilmann-Clausen, Thomas E. Holm, Irina Levinsky, Bo
Markussen, Kent Olsen, Carsten Rahbek, and Anders P. Tøttrup. 2016. What
determines spatial bias in citizen science? Exploring four recording schemes with
different proficiency requirements. Diversity and Distributions 22, 11 (11 2016),
1139–1149. https://doi.org/10.1111/ddi.12477

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The
MIT Press.

[14] Allen H. Hurlbert and Zhongfei Liang. 2012. Spatiotemporal Variation in Avian
Migration Phenology: Citizen Science Reveals Effects of Climate Change. PLOS
ONE 7, 2 (02 2012), 1–11. https://doi.org/10.1371/journal.pone.0031662

https://doi.org/10.1109/eScience.2010.33
https://doi.org/10.1016/j.biocon.2013.07.037
https://doi.org/10.1016/j.biocon.2013.07.037
https://doi.org/10.1525/bio.2009.59.11.9
http://dl.acm.org/citation.cfm?id=2892753.2892962
http://dl.acm.org/citation.cfm?id=2892753.2892962
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1145/1143844.1143871
https://doi.org/10.1016/j.jenvman.2018.02.080
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6417/6852
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6417/6852
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199641253.001.0001/oxfordhb-9780199641253-e-016
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199641253.001.0001/oxfordhb-9780199641253-e-016
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199641253.001.0001/oxfordhb-9780199641253-e-016
https://doi.org/10.1111/ddi.12477
https://doi.org/10.1371/journal.pone.0031662


GPU-accelerated Principal-Agent Game for Scalable Citizen Science COMPASS ’19, July 3–5, 2019, Accra, Ghana

[15] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on International Conference on Machine Learning
- Volume 37 (ICML’15). JMLR.org, 448–456. http://dl.acm.org/citation.cfm?id=
3045118.3045167

[16] Steve Kelling, Jeff Gerbracht, Daniel Fink, Carl Lagoze, Weng-Keen Wong, Jun
Yu, Theodoros Damoulas, and Carla Gomes. 2012. eBird: A Human/Computer
Learning Network for Biodiversity Conservation and Research. https://www.
aaai.org/ocs/index.php/IAAI/IAAI-12/paper/view/4880

[17] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). arXiv:1412.6980

[18] Jean-Jacques Laffont and David Martimort. 2002. The Theory of Incentives: The
Principal-Agent Model. Princeton University Press. http://www.jstor.org/stable/
j.ctv7h0rwr

[19] Chris J. Lintott, Kate Land, Kevin Schawinski, Anže Slosar, Daniel Thomas,
Robert C. Nichol, Steven Bamford, Alex Szalay, Jan Vandenberg, M. Jordan
Raddick, Dan Andreescu, and Phil Murray. 2008. Galaxy Zoo: morphologies
derived from visual inspection of galaxies from the Sloan Digital Sky Survey*.
Monthly Notices of the Royal Astronomical Society 389, 3 (09 2008), 1179–1189.
https://doi.org/10.1111/j.1365-2966.2008.13689.x

[20] N Justin Marshall, Diana A Kleine, and Angela J Dean. 2012. CoralWatch: educa-
tion, monitoring, and sustainability through citizen science. Frontiers in Ecology
and the Environment 10, 6 (2012), 332–334. http://www.jstor.org/stable/41811402

[21] Duncan C. McKinley, Abe J. Miller-Rushing, Heidi L. Ballard, Rick Bonney, Hutch
Brown, Susan C. Cook-Patton, Daniel M. Evans, Rebecca A. French, Julia K.
Parrish, Tina B. Phillips, Sean F. Ryan, Lea A. Shanley, Jennifer L. Shirk, Kristine F.
Stepenuck, Jake F. Weltzin, Andrea Wiggins, Owen D. Boyle, Russell D. Briggs,
Stuart F. Chapin, David A. Hewitt, Peter W. Preuss, and Michael A. Soukup. 2017.
Citizen science can improve conservation science, natural resource management,
and environmental protection. Biological Conservation 208 (2017), 15 – 28. https:
//doi.org/10.1016/j.biocon.2016.05.015

[22] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning (ICML’10). Omnipress, USA,
807–814. http://dl.acm.org/citation.cfm?id=3104322.3104425

[23] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. 2008. Playing Games for Security: An Efficient Exact
Algorithm for Solving Bayesian Stackelberg Games. In Proceedings of the 7th

International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 2 (AAMAS ’08). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 895–902. http://dl.acm.org/citation.cfm?id=
1402298.1402348

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

[25] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks 61 (2015), 85 – 117. https://doi.org/10.1016/j.neunet.2014.09.003

[26] Steven Shavell. 1979. Risk Sharing and Incentives in the Principal and Agent
Relationship. The Bell Journal of Economics 10, 1 (1979), 55–73. http://www.jstor.
org/stable/3003319

[27] Yaron Singer and Manas Mittal. 2013. Pricing Mechanisms for Crowdsourcing
Markets. In Proceedings of the 22Nd International Conference on World Wide Web
(WWW ’13). ACM, New York, NY, USA, 1157–1166. https://doi.org/10.1145/
2488388.2488489

[28] D. Steinkraus, I. Buck, and P. Y. Simard. 2005. Using GPUs for machine learning
algorithms. In Eighth International Conference on Document Analysis and Recog-
nition (ICDAR’05). 1115–1120 Vol. 2. https://doi.org/10.1109/ICDAR.2005.251

[29] Brian L. Sullivan, Christopher L. Wood, Marshall J. Iliff, Rick E. Bonney, Daniel
Fink, and Steve Kelling. 2009. eBird: A citizen-based bird observation network
in the biological sciences. Biological Conservation 142, 10 (2009), 2282 – 2292.
https://doi.org/10.1016/j.biocon.2009.05.006

[30] Patrícia Tiago, Ana Ceia-Hasse, Tiago A. Marques, César Capinha, and Hen-
rique M. Pereira. 2017. Spatial distribution of citizen science casuistic obser-
vations for different taxonomic groups. Scientific Reports 7, 1 (2017), 12832.
https://doi.org/10.1038/s41598-017-13130-8

[31] Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood, and Carla P. Gomes.
2016. Avicaching: A Two Stage Game for Bias Reduction in Citizen Science.
In Proceedings of the 2016 International Conference on Autonomous Agents &
Multiagent Systems (AAMAS). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 776–785. https://dl.acm.org/citation.cfm?
id=2936924.2937038

[32] Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood, and Carla P. Gomes.
2016. Behavior Identification in Two-Stage Games for Incentivizing Citizen
Science Exploration. In Principles and Practice of Constraint Programming, Michel
Rueher (Ed.). Springer International Publishing, Cham, 701–717. https://doi.org/
10.1007/978-3-319-44953-1_44

http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://www.aaai.org/ocs/index.php/IAAI/IAAI-12/paper/view/4880
https://www.aaai.org/ocs/index.php/IAAI/IAAI-12/paper/view/4880
http://arxiv.org/abs/1412.6980
http://www.jstor.org/stable/j.ctv7h0rwr
http://www.jstor.org/stable/j.ctv7h0rwr
https://doi.org/10.1111/j.1365-2966.2008.13689.x
http://www.jstor.org/stable/41811402
https://doi.org/10.1016/j.biocon.2016.05.015
https://doi.org/10.1016/j.biocon.2016.05.015
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=1402298.1402348
http://dl.acm.org/citation.cfm?id=1402298.1402348
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.jstor.org/stable/3003319
http://www.jstor.org/stable/3003319
https://doi.org/10.1145/2488388.2488489
https://doi.org/10.1145/2488388.2488489
https://doi.org/10.1109/ICDAR.2005.251
https://doi.org/10.1016/j.biocon.2009.05.006
https://doi.org/10.1038/s41598-017-13130-8
https://dl.acm.org/citation.cfm?id=2936924.2937038
https://dl.acm.org/citation.cfm?id=2936924.2937038
https://doi.org/10.1007/978-3-319-44953-1_44
https://doi.org/10.1007/978-3-319-44953-1_44

	Abstract
	1 Introduction
	2 Reducing Spatial Clustering
	2.1 Identification Problem: Learning Agents' Behavior
	2.2 Pricing Problem: Distributing Rewards
	2.3 Generalizing to Citizen Science Programs

	3 Scalable Principal-Agent Games Using Machine Learning
	3.1 Learning w* and r*

	4 Experiments
	4.1 Experiments for the Identification Problem
	4.2 Experiments for the Pricing Problem

	5 Conclusion
	6 Acknowledgements
	References

