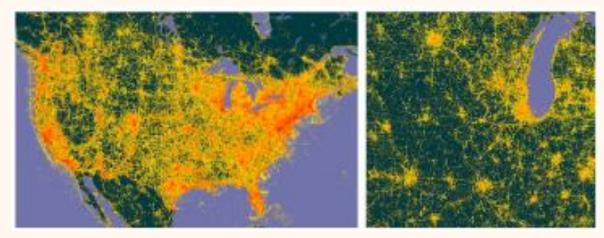


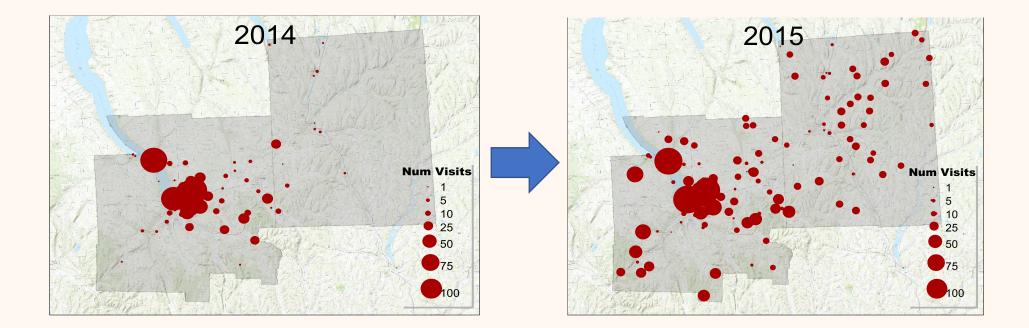
GPU-accelerated Principal-Agent Game for Scalable Citizen Science

Anmol Kabra¹, Yexiang Xue², Carla P. Gomes¹

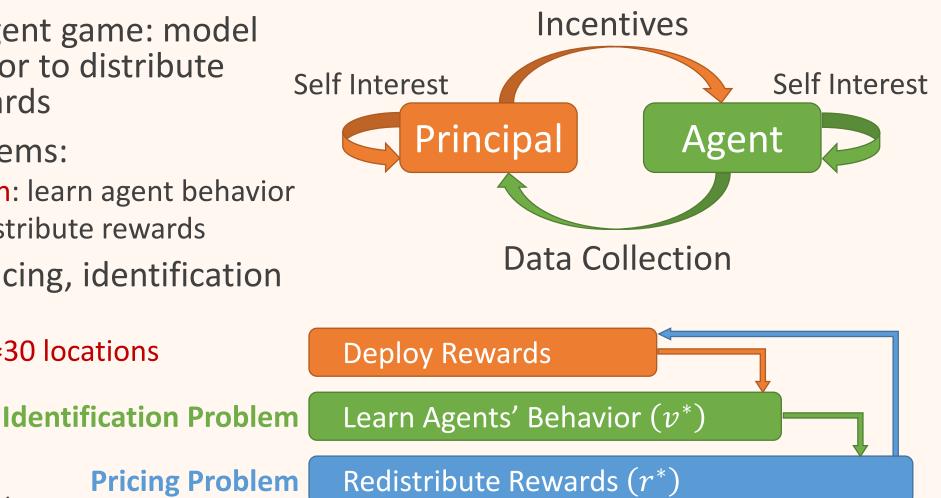

ak2426@cornell.edu yexiang@purdue.edu gomes@cs.cornell.edu ¹Cornell University, ²Purdue University

ACM Computing & Sustainable Societies 2019

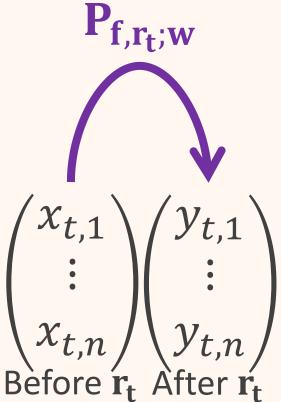
Sampling Bias in Citizen Science


- Crowdsourcing/Citizen Science programs (*eBird*, *Zooniverse*, *CoralWatch*) engage public in collecting data for research problems
- Data used for policy making, environmental conservation etc.

Spatial clustering in Mainland and Midwest US in eBird before 2014 (Xue, 2016a)


Previous Approaches

- Misaligned motivations of program (principal) and citizens (agent)
- Avicaching: incentivize citizens to visit under-sampled locations
 - 20% shift in *eBird* submissions after *Avicaching* (Xue, 2016a)


Previous Approaches

- A Principal-Agent game: model citizen behavior to distribute effective rewards
- Two subproblems:
 - Identification: learn agent behavior
 - Pricing: redistribute rewards
- MIP solves pricing, identification embedded
 - 3 hours for ≈30 locations

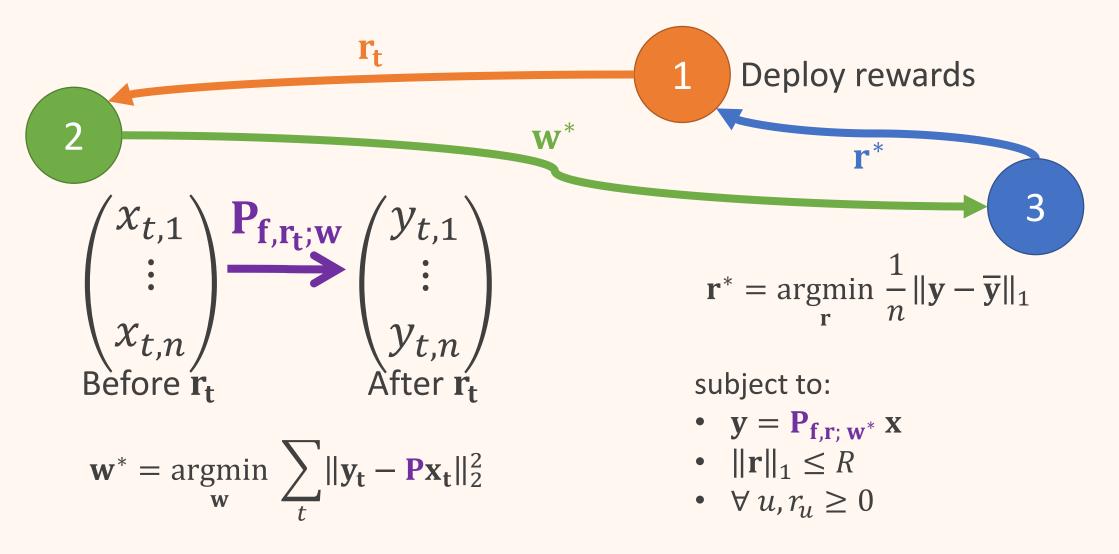
MIP = Mixed-Integer-Programming

Formalizing the Problem: Identification

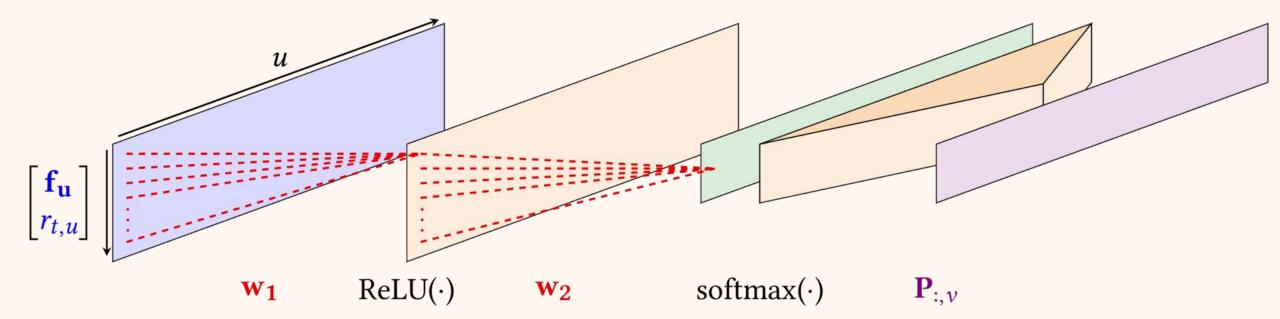
- For time period $t, \mathbf{x_t} \in \mathbb{R}^n$ are visit densities of nlocations before rewards $\mathbf{r_t} \in \mathbb{R}^n$ were placed; $\mathbf{y_t}$ are visit densities after placement
- Goal: learn matrix **P** s.t. $Px_t \approx y_t$
 - P depends on features of locations f, rewards $r_t,$ with parameters \boldsymbol{w}
 - $p_{u,v} = \Pr(\text{shift of submissions from location } v \text{ to } u)$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{t}} \|\mathbf{y}_{\mathbf{t}} - \mathbf{P}\mathbf{x}_{\mathbf{t}}\|_2^2$$

Formalizing the Problem: Pricing

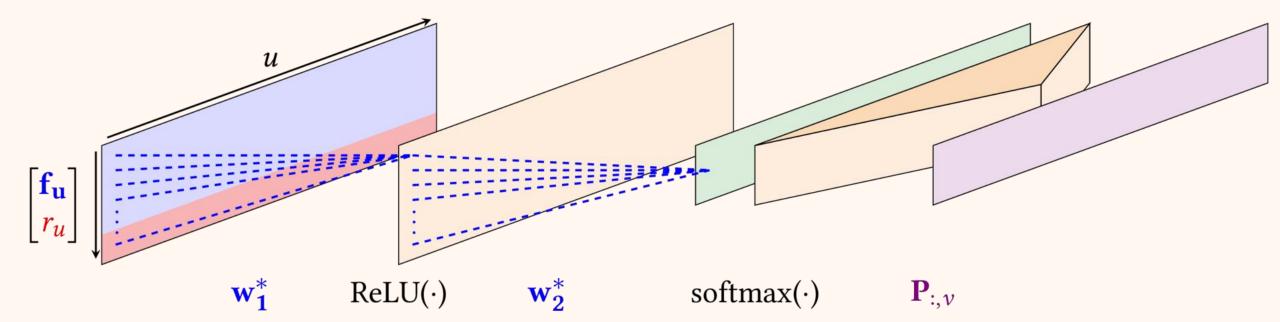

With \mathbf{w}^* learned from Identification

- Goal: distribute rewards s.t. future visit density is uniform
- With $\mathbf{x} = \sum_{t} \mathbf{x}_{t}$, reduce variance of $\mathbf{y} = \mathbf{P}_{\mathbf{f},\mathbf{r};\mathbf{w}^{*}}\mathbf{x}$ $\mathbf{r}^* = \underset{\mathbf{r}}{\operatorname{argmin}} \frac{1}{n} \|\mathbf{y} - \overline{\mathbf{y}}\|_1$


• Constraints on r:

Before \mathbf{r}_{t} After \mathbf{r}_{t}

- $\begin{array}{c} \mathbf{x}_{t,n} \\ \mathbf{x}_{t,n} \\ \mathbf{y}_{t,n} \end{array} \qquad \begin{array}{c} \text{solution} \\ \text{sol$


- Recall: MIP-based approach embedded Identification as linear constraints in Pricing
 - Optimal for Pricing, but not scalable or fast (standard CPU hardware)
 - Identification embedded as linear constraints
 - ➔ Model can't capture non-linear behavior
- Our work:
 - $p_{u,v}$ can be non-linear, result of a sequence of non-linearities
 - Parallelizable on GPUs: fast and scalable
 - Rewards can be non-integers

A 3-layer neural network for Identification Problem

For a location v, each vertical slice of the network weighs features of all locations u to get Pr(shift of submissions from v to other locations)

Red variables are optimized, blue do not change

Same network as before for Pricing Problem, only optimizing r

For a location v, each vertical slice of the network adjusts r_u to minimize variance of predicted visit densities, **y**

Red variables are optimized, blue do not change

Experiments

- Goals:
 - Improve speed and scalability
 - Not lose performance on objective

$$\min_{\mathbf{w}} \sum_{t} \|\mathbf{y}_{t} - \mathbf{P}\mathbf{x}_{t}\|_{2}^{2}$$

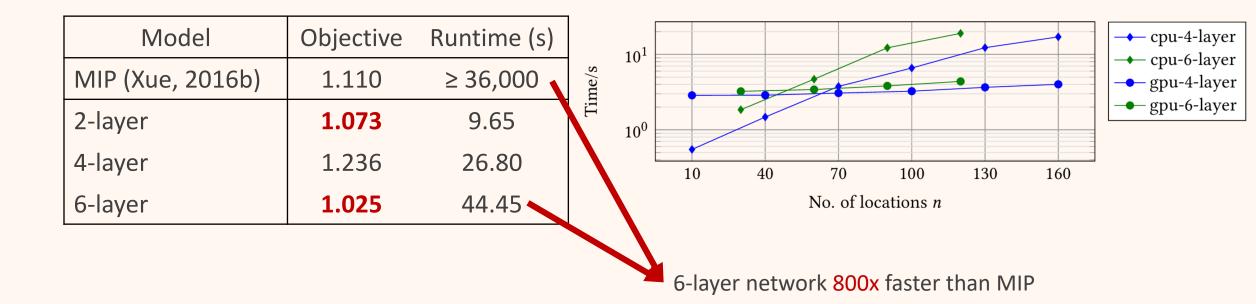
130

160

→ cpu-4-layer
→ cpu-6-layer
→ gpu-4-layer
→ gpu-6-layer

Identification Problem

$t = 182 \cdot n = 116 \cdot #$ features = $34 \cdot 75$ -5-20 split \cdot Adam algorithm for gradient descent


Model	Loss	Runtime (s)		
Random	1.014	—	e/s	10 ²
Random Forest	0.491	26.4	Time/s	101
BFGS (Xue, 2016b)	0.374	507.3		
2-layer	0.366	48.0		10 40 70 100 No. of locations <i>n</i>
6-layer	0.358	647.8		

Experiments

$$\min_{\mathbf{r}} \frac{1}{n} \|\mathbf{y} - \overline{\mathbf{y}}\|_1$$

Pricing Problem

 $R = 365 \cdot n = 116 \cdot \text{Adam algorithm for optimization}$

Conclusion

- A novel approach to solve Principal-Agent game for reducing sampling bias in large-scale citizen science programs
- Compared to the previous state-of-the-art MIP, our neural-networkbased approach delivers slightly better performance and orders of magnitude speedup with GPUs
- Future areas of study:
 - Memory-efficient networks
 - End-to-end learning framework for convenient deployment

GPU-accelerated Principal-Agent Game for Scalable Citizen Science

Contact:

- Anmol Kabra: <u>ak2426@cornell.edu</u>, @anmolkabra, <u>anmolkabra.com</u>
- Yexiang Xue: <u>yexiang@purdue.edu</u>
- Carla Gomes: <u>gomes@cs.cornell.edu</u>

References

- (Xue, 2016a) Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood, and Carla P. Gomes. 2016. Avicaching: A Two Stage Game for Bias Reduction in Citizen Science. In *Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems (AAMAS)*. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 776–785. <u>https://dl.acm.org/citation.cfm?id=2936924.2937038</u>
- (Xue, 2016b) Yexiang Xue, Ian Davies, Daniel Fink, Christopher Wood, and Carla P. Gomes. 2016. Behavior Identification in Two-Stage Games for Incentivizing Citizen Science Exploration. In *Principles and Practice of Constraint Programming*, Michel Rueher (Ed.). Springer International Publishing, Cham, 701–717. <u>https://doi.org/10.1007/978-3-319-44953-1_44</u>