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eBird WATCH

Sampling Bias in Citizen Science  76eNIVERSE

* Crowdsourcing/Citizen Science programs (eBird, Zooniverse,
CoralWatch) engage public in collecting data for research problems

e Data used for policy making, environmental conservation etc.
* Citizens’ motivations for tasks = Sampling bias = Spatial clustering

Spatial clustering in Mainland and Midwest US in eBird before 2014 (Xue, 2016a)



Previous Approaches

e Misaligned motivations of program (principal) and citizens (agent)

* Avicaching: incentivize citizens to visit under-sampled locations
e 20% shift in eBird submissions after Avicaching (Xue, 2016a)
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Previous Approaches

* A Principal-Agent game: model Incentives
citizen behavior to distribute
effective rewards

* Two subproblems: < Principal Agent pm

* |dentification: learn agent behavior
* Pricing: redistribute rewards

* MIP solves pricing, identification
embedded

* 3 hours for =30 locations Deploy Rewards

Self Interest Self Interest

Data Collection

Identification Problem RIS W-Y-LSE W EV RG]

Pricing Problem IS JN=N:ENEIL A Cad)
MIP = Mixed-Integer-Programming



Formalizing the Problem: Identification

Pf,rt;w * For time period t, Xy € R" are visit densities of n
locations before rewards r; € R" were placed; y;
are visit densities after placement

* Goal: learn matrix P s.t. PX; = y;

X * P depends on features of locations f, rewards ry, with
5L Yt parameters w

* Py = Pr(shift of submissions from location v to u)

Xtn / \Ytn
Before I, After I w* = argmin ZIIyt — Px|5
A"\
t



Formalizing the Problem: Pricing

With w* learned from Identification

Pf’r;w* & * Goal: distribute rewards s.t. future visit density is
uniform

* With x = ),; X, reduce variance of y = P¢.,,»X
r* = argmin —|ly —yll;
r N

* Constraintsonr:
e Sum up to budget R, i.e, |Ir|]|{ <R
Xtn / \Ytn * Non-negative, i.e., Vu, 1, =0
Before I; After ry

Xt1\ [/ Vt1



Scaling up the Game with Machine Learning

Xt1\ Prrow [Vt

1 _
r* = argmin — ||y —yl|;
r n
Xtn Ytn
Before 1y After ry subject to:

* V= Pf,r; w* X

w* = argmin leyt — Px¢||5 * |Irll; =R
w n e YVur, =0



Scaling up the Game with Machine Learning

e Recall: MIP-based approach embedded Identification as linear
constraints in Pricing
e Optimal for Pricing, but not scalable or fast (standard CPU hardware)
* |dentification embedded as linear constraints
=» Model can’t capture non-linear behavior

* Our work:
* Puv Can be non-linear, result of a sequence of non-linearities
* Parallelizable on GPUs: fast and scalable
* Rewards can be non-integers



Scaling up the Game with Machine Learning

w1 ReLU(-) \ P softmax(-) P.

A 3-layer neural network for Identification Problem

For a location v, each vertical slice of the network weighs features of all locations u
to get Pr(shift of submissions from v to other locations)

Red variables are optimized, blue do not change



Scaling up the Game with Machine Learning

w] ReLU(") W, softmax(-) P.y

Same network as before for Pricing Problem, only optimizing r

For a location v, each vertical slice of the network adjusts r;, to minimize variance
of predicted visit densities, y

Red variables are optimized, blue do not change



Experiments

e Goals:
. : 2
* Improve speed and scalability m“lln ZHYt — Px¢[[3
* Not lose performance on objective t

Identification Problem
#t=182-n = 116 - # features = 34 - 75-5-20 split - Adam algorithm for gradient descent

Model Loss  Runtime (s) —+— cpu-4-layer

Random 1.014 L " 102 |- - | —¢— cpu-6-layer
. 0 —e— gpu-4-layer
£
Random Forest 0.491 26.4 - 1 —e—gpu-6-layer
10
BFGS (Xue, 2016b) | 0.374 507.3 | J
10 40 70 100 130 160

R LRI il No. of locations n
6-layer 0.358 647.8




Experiments

1 _
min — ly — yll+

Pricing Problem
R = 365-n = 116 - Adam algorithm for optimization

Model Objective Runtime (s)
MIP (Xue, 2016b) 1.110 > 36,000
2-layer 1.073 9.65
4-layer 1.236 26.80
6-layer 1.025 44.45

Time/s

10!

10°

—— cpu-4-layer
—+— cpu-6-layer
—e— gpu-4-layer
—e— gpu-6-layer

10 40 70 100 130

No. of locations n

6-layer network 800x faster than MIP




Conclusion

* A novel approach to solve Principal-Agent game for reducing sampling
bias in large-scale citizen science programs

 Compared to the previous state-of-the-art MIP, our neural-network-
based approach delivers slightly better performance and orders of
magnitude speedup with GPUs

* Future areas of study:

* Memory-efficient networks
* End-to-end learning framework for convenient deployment
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